
1

Title
EMANE
Developer Training
 0.7.3

2

Extendable Mobile Ad-hoc Emulator

The Extendable Mobile Ad-hoc Network Emulator (EMANE) is an
open source framework which provides wireless network
experimenters with a highly flexible modular environment for use
during the design, development and testing of simple and complex
network architectures.

EMANE provides a set of well-defined APIs to allow independent
development of network emulation modules, emulation/application
boundary interfaces and emulation environmental data distribution
mechanisms.

3

Extendable Mobile
Ad-hoc Emulator

● Supports emulation of simple as well as complex network
architectures

● Supports emulation of multichannel gateways

● Supports model specific configuration and control messaging

● Provides mechanisms to bridge emulation environment control
information with non-emulation aware components

● Supports large scale testbeds with the same ease as small
test networks

● Supports cross platform deployment (Unix, Linux, OSX, MS
Windows)

4

EMANE Architecture

emaneeventdemaneeventdemaneeventdemaneeventdemaneeventd

OTA Manager

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

Platform NEM Server

Transport
Implementation

Log
Service

Event
Service

All
Platform
Elements

All
Platform
Elements

PHYI
&

 MACI

L
o

g
 S

e
rv

e
r

E
ve

n
t
S

e
rv

e
r

OTA Manager Channel

emaneeventd

Build
Director

Configuration Server
Web Server

PHY
PHY

Implementation

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

PHY
PHY

Implementation

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

PHY
PHY

Implementation

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

PHY
PHY

Implementation

Transport Daemon

(optional)(Peer Platform NEM Servers)

((optional))

(o
p

tio
n

a
l)

Transport
Implementation

Transport Daemon
Transport

Implementation

Transport Daemon
Transport

Implementation

Transport Daemon

5

Emulation Stack Anatomy

● Application/Emulation Boundary (Transport) –
Mechanism responsible for transporting data to
and from the emulation space.

● Network Emulation Module (NEM) - Emulation
implementation functionality for a given radio
model

● Over-The-Air Manager - Provides the
mechanism NEMs use to communicate

Transport

OTA

Network
Emulation
Module

Ethernet Frames

Over-The-Air
Emulation Data

6

● Realization of an emulation/application boundary interface. Provides
the entry and exit point for all data routed through the emulation.

For example the two ethernet frame transports: Virtual Transport and Raw
Transport are responsible for interfacing with the underlying operating system

– TunTap (linux, OS X)

– WinTap (win32)

Supports:

– IPv4

– IPv6

● Tunnels transport data as opaque payload to the corresponding
NEM.

– libpcap (linux, OS X)

– winpcap (win32)

– Unicast

– Broadcast

– Multicast

– Throughput limitation

Transport

7

Network Emulation Module

● NEMs composed of two components

MAC Layer – Medium Access Control Layer emulation functionality

– CSMA

– TDMA & Hybrid schemes

– Queue Management, Discard, QOS

– Adaptive Transmission Protocols (Power and Data Rate)

– Packet treatment based on BER, SINR and packet size

PHY Layer – Physical Layer emulation functionality
– Filter out of band packets

– Waveform Timing

– Half duplex operations

– Transmit Power and antenna gain

– Directional antenna support

– Noise Estimation

8

Over-The-Air Manager

● Messaging infrastructure to deliver emulation radio model messages
to all nodes in the deployment

● Uses a multicast channel for message distribution for NEMs hosted by
an NEM server different than that of the source NEM

● Uses thread shared memory for message distribution for NEMs hosted
by the same NEM server

● All messages are delivered to every NEM participating in the
emulation (PHY Layer activity)

● Provides the ability to model complex PHY phenomena such as RF
interference

● Multiple OTA mulitcast channels can be used to reduce overhead

● OTA multicast channel can be disabled when utilizing a single NEM
server

9

Emulation Stack Communication

● Ethernet Frames flow opaquely
through the emulation stack

● Metadata is appended to support
intra-layer communication as
packets travel downstream
between layers

● Metadata is stripped and
processed as packets travel
upstream between layers

10

Cross-Layer Communication

● Each stack layer has both a data and control path

● Control messages are only valid between contiguous
layers

Examples of control message use:

– Per packet RSSI (PHY to MAC)

– Carrier Sense (PHY to MAC)

– Transmission Control (MAC to PHY)

● Layer data destined for a corresponding layer uses
the opaque data path for messaging

● Data can be placed in a layer specific header of an
existing downstream data message

● A new data message may be generated just for layer
specific messaging

Boundary

MAC

PHY

Ethernet Frame

OTA

OTA Data Cross-Layer

OTA Data

OTA Data

Cross-Layer

11

Emulation Events

● Emulation data is distributed in realtime to NEMs by the EMANE
Event Service. Event data is distributed using the Event Multicast
channel.

● Emulation components that generate events are called Event
Generators.

● Events are distributed as opaque data

● Only Event Generators and components subscribed to the specific
events process the data

● Emulation event data is also available to non emulation components
through the EMANE Event Daemon

● An event agent plugin API exposes all transmitted events for external
processing without exposing the mechanisms used to transmit the data

12

EMANE Applications

● emane – NEM Platform Server application. Creates and
manages one or more NEMs.

Input XML: platform file

● emanetransportd – Transport Daemon application. Creates
and manages one or more transports.

Input XML: transportdaemon file

● emaneeventd – Event Daemon application. Creates and
manages one or more event agents.

Input XML: eventdaemon file

● emaneeventservice – Event Service application. Creates and
manages one or more event generators.

Input XML: eventservice file

13

EMANE XML Hierarchy

MACMACMAC MACMACMAC MACMACMAC

MACMACMAC

Platform

MACMACMAC

Event
 Service

MACMACMAC

Event
Daemon

MACMACMAC

Transport
Daemon

Transport

Event AgentEvent
Generator

PHYMAC Transport

NEM

MAC DLL PHY DLL Transport
DLL

Generator DLL

Transport
DLL

Agent DLL

Deployment

NEM Platform Server Transport Daemon

Event Service Event Daemon

14

Constructing NEM Layers

● EMANE::NEMDirector is responsible for parsing the Platform
Server configuration and determining configuration item values
based on the referenced NEM and NEM Layer component
configurations.

 emane/src/nemdirector.h

● Uses EMANE::NEMBuilder to instantiate all the required components.

● EMANE::NEMBuilder is the only location within the infrastructure
where the actual NEM component plugin type is known.

 emane/src/nembuilder.h

http://localhost:8000/classEMANE_1_1NEMDirector.html
http://localhost:8000/classEMANE_1_1NEMBuilder.html

15

EMANE::Component

emane/include/emane/emanecomponent.h

● Most common interface used in the
EMANE architecture

● Every component plugin derives from
EMANE::Component

● NEM Layer state machine driven by
dispatching
EMANE::Component methods

http://localhost:8000/classEMANE_1_1Component.html

16

NEM Layer State Diagram

17

ConfigurationDefinition Elements

Name Type Description

bDefault_ bool true if the parameter is required

bRequired_ bool true if value specified should be used as
the default

pzValue_ char * Null terminated string containing the
parameter name

uiCount_ unsigned int Total number of parameter instances
allowed or 0 for unlimited

pzValue_ char * Null terminated string representation of
the value

pzType_ char * Null terminated string containing the
parameter type (optional)

pzDescription char * Null terminated string containing the
parameter description (optional)

18

Implementing ConfigurationDefinition

● Declare a ConfigurationDefinition array containing the
desired configuration parameters, descriptions and default values.
Each parameter entry must be marked as either required or optional
using the bRequired_ element.

 const EMANE::ConfigurationDefinition defs[] =
 {
 // req, default, count, name, value, type, description */
 {false, true, 1, "traceenable", "off", 0, "turn on packet trace"},
 {false, true, 1, "maxstore", "10", 0, "max trace id amount"},
 {false, false, 0, "ignorenode", 0, 0, "do not trace dest node"},
 {true, false, 1, "floatvalue", 0, 0, "unused value"},
 {0,0,0,0,0,0,0},
 };

19

Implementing ConfigurationDefinition

● Load the ConfigurationDefinition array into the
configRequirements_ attribute using the
loadConfigurationDefinition function in the component
constructor.

● Use the Component::configure implementation to parse the
parameters in the component configure method. This step is only
necessary if you are specializing the configure method.

● In the component start method iterate through the
configRequirements_ attribute to access the configuration
parameters. Remember to throw an EMANE::StartException if
parameters are missing or found to contain erroneous values.

20

Implementing ConfigurationDefinition

● Make sure the component XML contains the appropriate
configuration parameters

1: <? xml version = " 1.0 " encoding = " UTF -8 " ? >
2: <! DOCTYPE shim SYSTEM " file: ///usr/share/emane/dtd/shim .dtd " >
3: < shim name = " Devel Training Shim " library = " devtrainingshim02" >
4: < param name = " floatvalue " value = " 2.7182818284 " / >
5: </ shim >

21

NEM Layer Anatomy

emane/include/emane/emanenemlayer.h

http://localhost:8000/classEMANE_1_1NEMLayer.html

22

NEM Layer Anatomy

● Two Types of NEM Component Stacks: structured and unstructured

● Structured – One PHY Layer, one MAC Layer, and zero or more Shim Layers

● Unstructured – Zero or one PHY Layer, zero or one MAC Layer, zero or more
Shim Layers

● Main difference between the two types is a relaxing of internal NEM
verification checks

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE nem SYSTEM "file:///usr/share/emane/dtd/nem.dtd">
 <nem name="Devel Training NEM" type="unstructured">
 <shim definition="devtrainingshim.xml"/>
 <transport definition="transvirtual.xml"/>
 </nem>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE nem SYSTEM "file:///usr/share/emane/dtd/nem.dtd">
<nem name="Devel Training NEM" type="structured">
 <mac definition="devtrainingmac.xml"/>
 <phy definition="devtrainingphy.xml"/>
 <transport definition="transvirtual.xml"/>
</nem>

23

NEM Layer Communication

● NEM Layer components communicate generically using the
EMANE::UpstreamTransport and
EMANE::DownstreamTransport interfaces

emane/include/emane/emaneupstreamtransport.h

emane/include/emane/emanedownstreamtransport.h

● EMANE::UpstreamTransport – packets and control entering the
NEM from the OTA boundary traveling toward/exiting the NEM at the
Transport Boundary

● Uses EMANE::UpstreamPacket

emane/include/emane/emaneupstreampacket.h

● EMANE::DownstreamTransport – packets and control entering
the NEM from the Transport boundary traveling toward/exiting the
NEM at the OTA boundary

● Uses EMANE::DownstreamPacket

emane/include/emane/emanedownstreampacket.h

http://localhost:8000/classEMANE_1_1UpstreamTransport.html
http://localhost:8000/classEMANE_1_1DownstreamTransport.html
http://localhost:8000/classEMANE_1_1UpstreamPacket.html
http://localhost:8000/classEMANE_1_1DownstreamPacket.html

24

Event Processing

● All components derive from EMANE::PlatformServiceUser

emane/include/emane/emaneplatformserviceuser.h

● EMANE::EventServiceHandler – provides processEvent which is used to
process emulation events

emane/include/emane/emaneeventservicehandler.h

● EMANE::TimerServiceHandler – provides processTimedEvent which is
used to process timer events

emane/include/emane/emanetimerservicehandler.h

http://localhost:8000/classEMANE_1_1PlatformServiceUser.html
http://localhost:8000/classEMANE_1_1EventServiceHandler.html
http://localhost:8000/classEMANE_1_1TimerServiceHandler.html

25

Message Processing

● EMANE::NEMQueuedLayer provides message queuing
mechanisms to decouple inter-layer communication

 emane/src/nemqueuedlayer.h

● Queued messages:

– processUpstreamPacket

– processUpstreamControl

– processEvent

● Ensures all calls to component message processing and event
processing methods happen serially within an individual component’s
dedicated message processing thread

EMANE::NEMQueuedLayer::processWorkQueue()

– processDownstreamPacket

– processDownstreamControl

– processTimedEvent

http://localhost:8000/classEMANE_1_1NEMQueuedLayer.html
http://localhost:8000/classEMANE_1_1NEMQueuedLayer.html#adc2f7572fb4e8cd3f161698836396a72

26

Platform Service

● EMANE::PlatformServiceProvider provides a single interface
for a set of services that are available to every component

emane/include/emane/emaneplatformserviceprovider.h

● Log Service provides the ability to log messages at various levels

emane/include/emane/emanelogserviceprovider.h

● Event Service provides the ability to send events

emane/include/emane/emaneeventserviceprovider.h

● Statistic Service provides the ability to create statistics for use in debugging and
performance evaluation

emane/include/emane/emanestatisticserviceprovider.h

● Timer Service provides the ability to schedule one-shot and reoccurring timer
events

emane/include/emane/emanetimerserviceprovider.h

● Random Number Service provides the ability for a component to access random
number generation in a thread-safe manner

emane/include/emane/emanerandomnumberserviceprovider.h

http://localhost:8000/classEMANE_1_1PlatformServiceProvider.html
http://localhost:8000/classEMANE_1_1LogServiceProvider.html
http://localhost:8000/classEMANE_1_1EventServiceProvider.html
http://localhost:8000/classEMANE_1_1StatisticServiceProvider.html
http://localhost:8000/classEMANE_1_1TimerServiceProvider.html
http://localhost:8000/classEMANE_1_1RandomNumberServiceProvider.html

27

MAC Layer API

● EMANE::MACLayerImplementor further specializes
processUpstreamPacket and sendDownstreamPacket

emane/include/emane/emanemaclayerimpl.h

● Adds an EMANE::CommonMACHeader parameter

emane/include/emane/emanecommonmacheader.h

http://localhost:8000/classEMANE_1_1MACLayerImplementor.html
http://localhost:8000/classEMANE_1_1CommonMACHeader.html

28

Implementing a MAC Layer

● Create a class derived from EMANE::MACLayerImplementor.

● Fill in the implementation for all virtual methods.

● Define and load the EMANE::Component configuration
requirements for the component.

● Expose the new MAC Layer to the EMANE infrastructure using the
DECLARE_MAC_LAYER macro.

● Create a MAC definition XML file containing the configuration
parameters and library name for the new MAC Layer implementation.

● Create an NEM XML definition file using the new MAC definition.

29

PHY Layer API

● EMANE::PHYLayerImplementor further specializes
processUpstreamPacket and sendDownstreamPacket

emane/include/emane/emanephylayerimpl.h

● Adds an EMANE::CommonPHYHeader parameter

emane/include/emane/emanecommonphyheader.h

http://localhost:8000/classEMANE_1_1PHYLayerImplementor.html
http://localhost:8000/classEMANE_1_1CommonPHYHeader.html

30

Implementing a PHY Layer

● Create a class derived from EMANE::PHYLayerImplementor.

● Fill in the implementation for all virtual methods.

● Define and load the EMANE::Component configuration
requirements for the component.

● Expose the new PHY Layer to the EMANE infrastructure using the
DECLARE_PHY_LAYER macro.

● Create a PHY definition XML file containing the configuration
parameters and library name for the new PHY Layer implementation.

● Create an NEM XML definition file using the new PHY definition.

31

Shim Layer API

emane/include/emane/emaneshimlayerimpl.h

http://localhost:8000/classEMANE_1_1ShimLayerImplementor.html

32

Implementing a Shim Layer

● Create a class derived from EMANE::ShimLayerImplementor.

● Fill in the implementation for all virtual methods.

● Define and load the EMANE::Component configuration
requirements for the component.

● Expose the new Shim Layer to the EMANE infrastructure using the
DECLARE_SHIM_LAYER macro.

● Create a Shim definition XML file containing the configuration
parameters and library name for the new Shim Layer
implementation.

● Create an NEM XML definition file using the new Shim definition.

33

Events

● Events are messages sent to components containing control
information

emane/include/emane/emaneevent.h

● Transmitted generically throughout the emulation deployment

● Event subsystem components:

● Event Service, Event Generators, and Event Agents.

http://localhost:8000/classEMANE_1_1Event.html

34

Implementing an Event

● Create a class derived from EMANE::Event.

● Provide a constructor that takes an EMANE::EventObjectState
constant reference argument and use the object state to reconstruct
the transmitted event object.

● The EMANE::Event base class takes an event id and an event name string as
constructor arguments.

● Throw an EMANE::EventObjectStateExcpetion if an error is detected with the
object state data.

● Event data contained in EMANE::EventObjectState objects are in Network Byte
Order.

● Event ids are 16 bit values. Ids with the most significant bit set are local ids.

● Provide an implementation for the getObjectState method. This
method returns an EMANE::EventObjectState object containing
all the data necessary to reconstruct this object when received by the
targeted EMANE components.

35

Event Service

● Allows the decoupling of the creation of events from their distribution

● EMANE::EventGenerator provides mechanism for transmitting
events without imposing limitation on how the events are created

emane/include/emane/emaneeventgenerator.h

http://localhost:8000/classEMANE_1_1EventGenerator.html

36

Implementing an Event Generator

● Create a class derived from EMANE::EventGenerator.

● Fill in the implementation for all virtual methods.

● Define and load the EMANE::Component configuration
requirements for the component.

● Register any events that the Event Generator will produce using the
EMANE::EventGenerator::addEventId method.

● Create a new thread to execute the backend code necessary to
generate events. This might be as simple as parsing input files,
building events and then sending them using the Platform Service.

● Expose the new Event Generator to the EMANE Event Service using
the DECLARE_EVENT_GENERATOR macro.

37

Implementing an Event Generator

● Create an Event Generator definition XML file containing the
configuration parameters and library name for the new Event
Generator implementation.

● Add the Event Generator to the EMANE Event Service XML.

38

Event Daemon

● Event Daemon provides a mechanism to transport event data from
the emulation domain to other application domains

● EMANE::EventAgent provides the ability to register to received events in order
to communicate the data to other applications

emane/include/emane/emaneagent.h

http://localhost:8000/classEMANE_1_1EventAgent.html

39

Implementing an Event Agent

● Create a class derived from EMANE::EventAgent.

● Fill in the implementation for all virtual methods.

● Define and load the EMANE::Component configuration
requirements for the agent.

● Expose the new Event Agent to the Event Daemon using the
DECLARE_EVENT_AGENT macro.

● Create an Event Agent definition XML file containing the
configuration parameters and library name for the new Event Agent
implementation.

● Add the Event Agent to the EMANE Event Daemon XML.

40

Transport

● Transports are the emulation boundary interfaces that provide the
entry and exit points for all data routed through the emulation.

● A Transport component implementation is a realization of the
EMANE::Transport interface.

emane/include/emane/emanetransport.h

http://localhost:8000/classEMANE_1_1Transport.html

41

Implementing a Transport

● Create a class derived from EMANE::Transport.

● Fill in the implementation for all virtual methods.

● Define and load the EMANE::Component configuration
requirements for the component.

● Create a new thread to execute the backend code necessary to
receive and process the input appropriate for the transport
implementation. Use the sendDownstreamPacket and
sendDownstreamControl methods to send packets and control
messages to the transport’s respective NEM.

● Expose the new transport to the EMANE infrastructure using the
DECLARE_TRANSPORT macro.

● Create an NEM XML definition file using the new transport definition.

42

libemaneeventservice

● libemaneeventservice – C Language API for interfacing with
the Event Service

● libemaneeventpathloss– C Language API for building and
parsing Pathloss Events

● libemaneeventlocation – C Language API for building and
parsing Location Events

● libemaneventantennadirection – C Language API for building
and parsing Antenna Direction Events

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

