
1

Welcome to EMANE User Training

● Please select your VM of choice:

● Parallels:

emanedemo/vm/parallels/emanedemo-0.7.x.20120223-1.pvm.tar.bz2

● VMware or VirtualBox:

emanedemo/vm/vbox_vmware/emanedemo-0.7.x.20120223-1.tar.bz2

● To extract in a Linux or OS X terminal:

tar xjvf emanedemo/vm/parallels/emanedemo-0.7.x.20120223-1.pvm.tar.bz2

● To extract in Windows

● Double click on emanedemo-0.7.x.20120223-1.tar.bz2

● Double click on emanedemo-0.7.x.20120223-1.tar

● If you are using VirtualBox you will need to import the Virtual
Machine

Feel free to ask for help

2

Title
EMANE
User Training
 0.7.3

3

Extendable Mobile Ad-hoc Emulator

The Extendable Mobile Ad-hoc Network Emulator (EMANE) is an
open source framework which provides wireless network
experimenters with a highly flexible modular environment for use
during the design, development and testing of simple and complex
network architectures.

EMANE provides a set of well-defined APIs to allow independent
development of network emulation modules, emulation/application
boundary interfaces and emulation environmental data distribution
mechanisms.

4

Extendable Mobile Ad-hoc Emulator

● Supports emulation of simple as well as complex network
architectures

● Supports emulation of multichannel gateways

● Supports model specific configuration and control messaging

● Provides mechanisms to bridge emulation environment control
information with non-emulation aware components

● Supports large scale testbeds with the same ease as small
test networks

● Supports cross platform deployment (Unix, Linux, OS X, MS
Windows)

5

Mapping a Real World Deployment

6

Heterogeneous Network

7

EMANE Heterogeneous Model
Deployment

8

EMANE Heterogeneous Model
Deployment

NEMs NEMsNEMs

NEMsNEMs NEMsNEMs

NEMsNEMs

9

EMANE Heterogeneous Model
Deployment

NEM Platform Server

10

EMANE Heterogeneous Model
Deployment

NEM Platform Server

NEMsApplication/Emulation Boundaries Application/Emulation Boundaries

Application/Emulation Boundaries

Application/Emulation Boundaries Application/Emulation Boundaries

A.K.A Transports

11

EMANE Heterogeneous Model
Deployment

NEM Platform Server

Transport Daemon

12

EMANE Heterogeneous Model
Deployment

NEM Platform Server

OTA Channel

Transport Daemon

13

EMANE Heterogeneous Model
Deployment

NEM Platform Server

OTA Channel

Event GeneratorsEvent GeneratorsEvent GeneratorsEvent Generators

Event Service

Location Pathloss

Transport Daemon

14

EMANE Architecture

emaneeventdemaneeventdemaneeventdemaneeventdemaneeventd

OTA Manager

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

Platform NEM Server

Transport
Implementation

Log
Service

Event
Service

All
Platform
Elements

All
Platform
Elements

PHYI
&

 MACI

L
o

g
 S

e
rv

e
r

E
ve

n
t
S

e
rv

e
r

OTA Manager Channel

emaneeventd

Build
Director

Configuration Server
Web Server

PHY
PHY

Implementation

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

PHY
PHY

Implementation

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

PHY
PHY

Implementation

MAC
MAC

Implementation

Network Adapter

OTA Adapter

NEM

Layer
Stack

PHY
PHY

Implementation

Transport Daemon

(optional)(Peer Platform NEM Servers)

((optional))

(o
p

tio
n

a
l)

Transport
Implementation

Transport Daemon
Transport

Implementation

Transport Daemon
Transport

Implementation

Transport Daemon

15

Deployment Diagram Key

16

EMANE Demo VM

17

EMANE Demo VM

● The EMANE Demo Virtual Machine is a 32 bit RPM based Linux VM
fully configured with the latest EMANE release and the latest EMANE
User Manual Demonstrations.

● Any modern Linux installation with lxc Linux Container support
running the latest EMANE release will be able to execute the EMANE
User Manual demonstrations.

● Each demonstration makes use of Linux Containers to create lightweight virtual
nodes. Each container node is assigned their own Network and PID namespace
to provide network stack and process isolation.

● Each demonstration configures the containers and the applications running in
each container node respective to the features and mechanisms being
demonstrated.

● Each container node is running an SSH server to allow hands on interaction and
examination during the demonstration.

18

Demo Node Test Network

19

Infrastructure Basics

20

NEM Platform Server

● Creates and manages NEM instances

● Processes an XML configuration file to determine the quantity and types of NEMs
to instantiate.

● Manages NEM OTA Communication

● NEMs belonging to the same platform use thread shared memory message
passing.

● NEMs belonging to different platforms communicate using a multicast channel
referred to as Over-The-Air (OTA) Manager Channel.

● Manages Event Distribution

● NEMs belonging to the same platform use thread shared memory message
passing.

● NEMs belonging to different platforms communicate using a multicast channel
referred to as the Event Service Channel.

21

Deployment Types

● Centralized Deployment - Single NEM Platform Server that
instantiates all of the NEMs contained in the deployment.

● Distributed Deployment - Multiple NEM Platform Servers each
containing a single NEM instance. In a distributed deployment, the
number of NEM Platform Servers equals the number of NEMs in the
deployment.

● Hybrid Deployment - Multiple NEM Platform Servers, with at least
one containing multiple NEM instances.

22

Centralized and Distributed Deployment
Example

23

Centralized Deployment Example

24

Distributed Deployment Example

25

NEM Platform Server Configuration

● Over-The-Air Manager Channel Configuration

● otamanagergroup - The Over-The-Air (OTA) Channel mulitcast endpoint used to
communicate between multiple NEM Platform Servers in an EMANE deployment.

● otamanagerdevice - The network device to associate with the OTA Manager
Channel multicast endpoint. If missing, the kernel routing table is used to route
multicast joins and packet transmissions.

● otamanagerchannelenable - Enable or disable the OTA Manager Channel.
When disabled, there is no inter-NEM Platform Server communication and only
NEMs managed locally by a single NEM Platform Server will be able to
communicate.

● Event Service Channel Configuration

● eventservicegroup - The Event Service Channel mulitcast endpoint used to
communicate events between EMANE components in an EMANE deployment.

● eventservicedevice - The network device to associate with the Event Service
Channel multicast endpoint. If missing, the kernel routing table is used to route
multicast joins and packet transmissions.

26

NEM Platform Server Configuration

● Debug Port

● debugport - NEM Platform Server telnet debug UDP port.

● debugportenable - Enable or disable the NEM Platform Server telnet debug port.

27

NEM Platform Server Shared
Configuration

NEM Platform Server and Transport Daemon
Shared Configuration

● platformendpoint - The endpoint that an NEM should bind
to in order to receive messages from its respective
emulation/application boundary. The address an
emulation/application boundary instance sends to when
communicating with its respective NEM.

● transportendpoint - The endpoint that an
emulation/application boundary should bind to in order to
receive messages from its respective NEM. The address
an NEM instance sends to when communicating with its
respective emulation/application boundary instance.

Transport Daemon
(Hosting 1 Transport)

NEM Platform Server
(Hosting 1 NEM)

28

Transport Daemon

● Creates and manages emulation/application boundary (Transport)
instances

● Processes an XML configuration file to determine the quantity and type of
Transports to instantiate.

● Manages NEM/Transport communication

● NEM Layer stacks communicate with their respective Transport instance using
UDP messaging.

● Data received from the application domain is transmitted opaquely to
the Transport's respective NEM for OTA message processing

● Only EMANE component aware of the exact format of the application domain
data.

● Supplies the destination address, either a unicast or broadcast NEM identifier, to
the NEM stack.

● Transports may or may not be designed to inter-operate with other
dissimilar boundary components in the same experiment

29

Centralized Deployment Example

30

Centralized Deployment Example

31

Distributed Deployment Example

32

Distributed Deployment Example

33

Demonstration 1

This demonstration deploys a four node centralized Bypass NEM
emulation experiment. The goal of this demonstration is to become
familiar with the basic EMANE components in a centralized deployment.

34

Demonstration 2

This demonstration deploys a four node distributed Bypass NEM
emulation experiment. The goal of this demonstration is to become
familiar with the basic EMANE components in a distributed deployment.

35

Network Emulation Modules

36

NEM Anatomy

● A Network Emulation Module (NEM) is a logical component that
encapsulates all the functionality necessary to emulate a particular
type of network technology.

● Structured NEM - Component stack composed of a Physical (PHY) Layer
implementation, a Medium Access Control (MAC) Layer implementation and zero
or more Shim Layer implementations

● Unstructured NEM - Component stack composed of zero or one PHY Layer
implementation, zero or one MAC Layer implementation and zero or more Shim
Layer implementations.

37

NEM Layer Communication

● NEM layers communicate with each other using a generic message
passing interface.

● Each layer is capable of communicating cross-layer control
messages and OTA messages with their neighboring layers

● Examples of cross-layer messages include: per packet RSSI, carrier sense, and
transmission control messages.

● Each layer has the capability to
generate OTA messages for
communication with their respective
layer counterparts

● Layers may also append and strip
layer specific headers to OTA
messages.

38

Defining an NEM

● NEM is defined using an XML configuration file.

● NEM Layer Stack defined <mac>,<phy>,<shim> and <transport> XML elements.

– Each element has a mandatory definition attribute which references the XML
configuration associated with the component.

● All NEM definitions are subject to the following rules which are
enforced by the EMANE NEM DTD:

● The order in which child elements are listed within the <nem> definition block
corresponds to the order the plugin layers will be connected once instantiated,
with the exception of the <transport> element.

● The first child element in the <nem> definition block is the most upstream non-
transport layer.

● The <transport> element must be the last child element in the <nem> definition
block.

39

Defining an NEM

40

Defining an NEM

41

Physical Layer

● The primary function is to accurately account for the key set of
factors that impact the reception of data.

● Data reception based on the Signal to Interference plus Noise Ratio
(SINR) at the receiving node.

● Slight variations in SINR can impact the receiver's ability to receive data

● Factors impacting the receive
signal:

● Signal Propagation Models

● Antenna Modeling

42

Physical Layer

Factors impacting Interference and Noise:

● Receiver Sensitivity - Minimum input power at the receiver for (possible)
successful data reception or the Noise Floor of the receiver when there is no
other interference

– Receiver sensitivity is based on Thermal Noise Power (dBm) and the Noise Figure (dB)
associated with the receiver.

● Thermal Noise Power = -174 + 10log(bandWidth)
● Noise Figure – Any additional degradation of the signal caused by components

within the RF signal chain of the receiver. Typically 4 to 6 dB.

Bandwidth Thermal Noise Power Description

1 MHz -114 dBm Bluetooth channel

2 MHz -111 dBm Commercial GPS channel

6 MHz -106 dBm Analog television channel

20 MHz -101 dBm WLAN 802.11 channel

40 MHz -98dBm WLAN 802.11 40 MHz channel

1 GHz -84 dBm UWB channel

43

Physical Layer

● Factors impacting Interference and Noise:

● Interference from intentional and unintentional RF emitters - Any additional
RF energy within the RF spectrum of the receiver and can raise the over all Noise
Floor

44

Supporting Heterogeneous Waveforms

● Common PHY Header is a mandatory PHY Layer model header.
Allows different physical layer models to process the potential
spectrum impact of packets generated by other waveforms.

● Supports Receive Power Control

● Supports Noise/Interference Calculations

● Mandatory Header Contents:

● Registration Id of the PHY Layer Model

● Transmit power in dBm of the transmitter

● Antenna gain in dBi of the transmitter

● Timestamp of the transmitted packet

● Duration of the transmitted packet

● Center frequency in KHz

● Bandwidth in KHz

● Packet sequence number

45

Supporting Heterogeneous Waveforms

● Optional Header Contents:

● Transmitter antenna type

● Transmitter antenna azimuth beam width in degrees

● Transmitter antenna elevation beam width in degrees

● Transmitter antenna azimuth in degrees

● Transmitter antenna elevation in degrees

46

MAC Layer

● Defines the mechanisms used to control access to a wireless
medium shared by multiple nodes

● Channel access protocols

– Time Division Multiple Access (TDMA)

– Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)

– Frequency Division Multiple Access (FDMA)

– Code Division Multiple Access (CDMA).

● May include support for QoS requirements:

● Queuing

● Acknowledgments

● Retries

● Fragmentation

● Segmentation

47

Shim Layer

● Allows monitoring and modification of OTA and cross-layer
messaging exchanged between contiguous layers.

● May generate OTA messages for communication with respective
Shim Layers contained in different NEMs

● May append and strip layer specific headers.

● May be inserted between the layers of a NEM stack or at the top and
bottom of a layer stack.

● Implements the same generic interface as a MAC and PHY which
allows insertion between components without requiring those
components to have knowledge of their presence.

48

NEM Layer Stack with Shim Layers

49

Events

50

Event Service

● Events - Opaquely distributed messages delivered in realtime to one
or more targeted components.

● Event Generators - Components which create events based on
scenarios.

● Event Service - Creates and manages Event Generator instances.

● Processes an XML configuration file to determine the quantity and type of Event
Generators to instantiate.

51

Event Service

52

Event Generators

● No restriction is placed on how Event Generators create events.

● Read precomputed state information from input files and publish events on time
boundaries.

● Create event data algorithmically in realtime and publish the events based on
update threshold logic.

● New event types require no modification to existing components
provided those components are not required to process the new
events.

● Only the Event Generator and the destination EMANE components
need to know the more specialized form of the generically
transmitted event.

● Events are addressable using a 3-tuple: NEM Platform Server
identifier, NEM identifier and component identifier.

53

Event Generator XML Definition

54

Event Service Configuration

● Event Service Channel Configuration

● eventservicegroup - The Event Service Channel mulitcast endpoint used to
communicate events between EMANE components in an EMANE deployment.

● eventservicedevice - The network device to associate with the Event Service
Channel multicast endpoint. If missing, the kernel routing table is used to route
multicast joins and packet transmissions.

55

Event Daemon

● Event Agent - Component that translates events from their
emulation domain representation to a format usable by application
domain entities.

● Facilitates reuse of any experiment scenario information propagated via an event
that is of interest outside of the emulation domain.

● Event Daemon - Creates and manages Event Agent instances

● Processes an XML configuration file to determine the quantity and type of Event
Agent to instantiate.

56

Event Agent XML

57

Event Daemon Configuration

● Event Service Channel Configuration

● eventservicegroup - The Event Service Channel mulitcast endpoint used to
communicate events between EMANE components in an EMANE deployment.

● eventservicedevice - The network device to associate with the Event Service
Channel multicast endpoint. If missing, the kernel routing table is used to route
multicast joins and packet transmissions.

58

Event Types

● Pathloss Event - Contains a variable length list of pathloss entries
that are unique to each targeted NEM.

● Entry consists of a transmitter NEM Id and the pathloss to/from the transmitter
NEM with respect to the targeted NEM.

● Location Event - Contains a viable length list of location entries that
update the GPS location of one or more NEMs.

● Entry consists of an NEM Id and the latitude, longitude, and altitude associated
with that NEM.

● Comm Effect Event - Contains a variable length list of
communication effect entries that are unique to each targeted NEM.

● Entry consists of a transmitter NEM Id and the latency, jitter, loss, duplication rate,
unicast bitrate, and broadcast bitrate associated with packets received from the
transmitter NEM to the target NEM.

59

Event Types

● Antenna direction Event - Contains a variable length list of antenna
direction entries that update the antenna direction of one or more
NEMs.

● Entry consists of an NEM Id and the antenna elevation, azimuth, beam width
elevation, and beam width azimuth associated with that NEM.

60

Demonstration 3

This demonstration deploys a ten node distributed IEEE 802.11abg NEM
emulation experiment. The goal of this demonstration is to become
familiar with the basic EMANE components involved in producing and
consuming events.

61

XML Configuration

62

Layered XML Configuration

● EMANE uses a generic XML configuration design.

● All components are capable of specifying any number of configuration parameters
using a generic syntax.

● Parameter/Value pairs are made accessible to their respective components via a
configuration API.

● XML is layered to allow tailoring of lower levels of configuration to
simplify deployment and promote reuse.

● Complex components are created by combining XML definitions.

● Configuration parameters do not need to be present in the XML if
they are not required.

63

EMANE XML Hierarchy

MACMACMAC MACMACMAC MACMACMAC

MACMACMAC

Platform

MACMACMAC

Event
 Service

MACMACMAC

Event
Daemon

MACMACMAC

Transport
Daemon

Transport

Event AgentEvent
Generator

PHYMAC Transport

NEM

MAC DLL PHY DLL Transport
DLL

Generator DLL

Transport
DLL

Agent DLL

Deployment

NEM Platform Server Transport Daemon

Event Service Event Daemon

64

XML Layering Example

65

XML Layering Example

66

XML Layering Example

67

Automatic XML Generation

● The standard EMANE distribution provides two tools that can be
used to automatically generate Transport Daemon XML and
deployment XML:

● emanegentransportxml

● emanegendeploymentxml

68

Transport Grouping

● emanegentransportxml uses the Platform XML transport element's
optional group attribute to group transports with matching values into
a single Transport Daemon XML configuration.

● Used when deploying multi-channel gateways

● Used with Raw Transport instances when configuring EMANE as a black box
emulator

69

Transport Grouping Example

70

Transport Grouping Example

71

Demonstration 4

This demonstration deploys a ten node hybrid RF-Pipe NEM emulation
experiment. The goal of this demonstration is to become familiar with
the EMANE XML Hierarchy.

72

Demonstration 5

This demonstration generates the XML configuration necessary to deploy
a ten node hybrid RF-Pipe NEM emulation experiment. The goal of this
demonstration is to become familiar with the automatic XML generation
tools emanegentransportxml and emanegendeploymentxml.

73

Deployment Debugging

74

NEM Platform Server Debug Port

● NEM Platform Server can be configured to enable an external debug
port using the debugportenable parameter.

● Debug Port is accessible via any telent client.

● Provides an interface to retrieve layer stack and statistic information for all NEMs
contained in a platform.

● The default debug port TCP port is 47000 and can be modified using the
debugport parameter.

75

Debug Port Commands

Command Description

clear Clears the screen

exit/quit Terminates the debug port session

help Lists supported command and displays command specifics

stats Queries and displays the statistics of one or more of the NEMs
contained in the platform

clearstats Clears the statistics of one or more of the NEMs contained in the
platform

showstacks Displays the NEM Layer stack information of one or more the NEMs
contained in the platform

version Displays the EMANE version

76

Logging

● All four EMANE container applications support logging: emane,
emanetransportd, emaneservice and emaneeventd.

● EMANE supports five log levels and logs can be directed to: stdout,
file, syslog, or ACE Log Server.

Name Description syslog mapping Option Value

NOLOG_LEVEL No Logging 0

ABORT_LEVEL Unrecoverable failure
detected

LOG_USER|
LOG_CRIT

1

ERROR_LEVEL Recoverable failure
notification

LOG_USER|
LOG_ERR

2

STATISTIC_LEVEL Statistic out message LOG_USER|
LOG_INFO

3

DEBUG_LEVEL General verbose debugging LOG_USER|
LOG_DEBUG

4

77

Demonstration 6

This demonstration deploys a ten node centralized IEEE 802.11abg
NEM emulation experiment. The goal of this demonstration is to become
familiar with the NEM Platform Server Debug Port.

78

Demonstration 7

This demonstration deploys a ten node centralized IEEE 802.11abg
NEM emulation experiment. The goal of this demonstration is to become
familiar with EMANE logging mechanisms..

79

Universal PHY Layer

80

Universal PHY Layer

● The Universal PHY Layer provides a common PHY implementation
for the various MAC Layers supplied as part of the standard EMANE
distribution. Its use is not mandatory but is encouraged for authors of
other proprietary and non-proprietary MAC implementations as it
provides a set of core functionality required by most wireless
Network Emulation Modules.

● The key functionality includes the following:

● Pathloss Calculation

● Receive Power Calculation

● Directional Sector Antenna Support

● Noise Processing

● MAC-PHY Control Messaging

81

Pathloss Calculation

● Pathloss within the Universal PHY Layer is based on location or
pathloss events.

● Pathloss is dynamically calculated based on location events when
the pathlossmode configuration parameter is set to either 2ray or
freespace

● Pathloss can be provided in realtime based on external propagation
calculations using pathloss events. The pathlossmode
configuration parameter should be set to pathloss to process
pathloss events.

82

Receive Power Calculation

● For each received packet, the Universal PHY Layer computes the
receiver power associated with that packet using the following
calculation:

rxPower = txPower + txAntennaGain + rxAntennaGain – pathloss

txPower - Packet Common PHY Header transmitter power

txAntennaGain - Packet Common PHY Header transmitter antenna gain

rxAntennaGain - Configuration parameter antennagain

pathloss - Pathloss between transmitter and receiver determined based on
pathlossmode

● If the rxPower is less than the rxSensitivity, the packet is silently
discarded.

rxSensitivity = -174 + noiseFigure + 10log(bandwidth)

bandwidth - Configuration parameter bandwidth

noiseFigure - Configuration parameter noisefigure

83

● Utilizes location events and Tx and Rx antenna information to
determine if two nodes are visible

● Current directional antenna support is based on sector antennas,
where a sector is defined by antenna azimuth and elevation beam
width. Any intersection between the transmitting and receiving
antenna will apply full gain.

Directional Antenna Support

84

Directional Antenna Support

● Provides ability to assign the directional antenna pointing and profile
via three mechanisms.

● Static from XML configuration

● MAC Layer control message on a per packet basis

● Antenna Direction events

● Four configuration items are used to define the pointing and profile
characteristics of a directional antenna:

● antennaazimuth

● antennaelevation

● antennaazimuthbeamwidth

● antennaelevationbeamwidth

85

Directional Antenna Support

86

Noise Processing

● Assess the impact of intentional and unintentional noise sources
within the emulation by adjusting the noise floor.

● Achieved by summing the energy of interferers within the appropriate frequency of
interest over a given time interval and adjusting the noise floor accordingly when
a valid packet is received.

● Only computes interference for out-of-band packets

● out-of-band packet is one which is not from the same emulated waveform.

● Waveform type determined by comparing the PHY Registration Id, center
frequency, and Universal PHY Layer subid of each packet

● MAC Layer implementation responsibility to account for in-band
interference.

87

MAC-PHY Control Messaging

● Provides a control API on a per packet basis for every transmit (Tx)
packet received from the MAC Layer for over-the-air transmission
and every received (Rx) over-the-air packet sent to the MAC Layer
for processing.

● The Tx Control API provides the MAC Layer with the ability to
override default PHY Layer configuration for transmit power,
message duration, transmit frequency and antenna pointing.

● Utilizes the data from the Tx Control message to populate the Common PHY
Header.

● The Rx Control API provides the MAC Layer with the appropriate
receive information.

● Receive power, noise floor, message duration, propagation delay and receive
frequency.

● Allows for performing SINR based packet completion calculation, in-band
collision detection and channel access protocols.

88

Universal PHY Layer Configuration

● bandwidth - Defines the center frequency bandwidth in KHz. This is
used to compute the receiver sensitivity and is also included in all
over-the-air transmissions to support noise processing calculations.

● antennagain - Defines the antenna gain in dBi. This is used to
compute the receive power associated with an OTA packet and
included in the Common PHY Header of all transmitted OTA packets.

● Can be overridden by a MAC Layer using the TX Control API.

● systemnoisefigure - Defines the system noise figure in dB. The
system noise figure is used along with the bandwith to compute the
receiver sensitivity.

89

Universal PHY Layer Configuration

● frequencyofinterest -Defines a set of frequencies in KHz that the
Universal PHY Layer will monitor.

● Multiple frequencies can be monitored to support MAC Layer implementations
with frequency agility or hopping capability.

● Only packets received on a frequency of interest will be sent to the MAC Layer for
processing provided waveform and receive power criteria are met.

● Separate noise floor calculations are maintained for each frequency of interest.

● pathlossmode - Defines the pathloss mode of operation. The
pathloss mode of operation determines whether pathloss or location
events will be used as input to the Universal PHY Layer propagation
functionality.

● noiseprocessingmode - Enables or disables noise processing.
When on, out of band packets (not of this waveform) within a
frequency of interest will raise the noise floor accordingly.

90

Universal PHY Layer Configuration

● defaultconnectivitymode - Defines the default connectivity mode
for pathloss.

● When on, full connectivity will be engaged until a valid event (pathloss or location)
is received based on the pathlossmode setting.

● Any valid event of the appropriate type, regardless if it contains information for the
receiving NEM, will disengage default connectivity mode.

● Directional antenna functionality is bypassed when default connectivity mode is
engaged.

● When off, no connectivity is in effect until a valid event is received.

● txpower - Defines the transmit power in dBm. This is used to
compute the receive power associated with an OTA packet and
included in the Common PHY Header of all transmitted OTA packets.

● Can be overridden by a MAC Layer using the TX Control API.

91

Universal PHY Layer Configuration

● frequency - Defines the transmit center frequency in KHz. This value
is included in the Common PHY Header of all transmitted OTA
packets.

● Can be overridden by a MAC Layer using the TX Control API.

● Directional Antenna Configuration - Used in the directional antenna
pointing computation associated with an OTA packet and included in
the Common PHY Header of all transmitted OTA packets when the
antennatype is unidirectional. All values can be overridden by a
MAC Layer using the TX Control API and/or via antenna pointing
events.

● antennaazimuthbeamwidth - Defines the antenna azimuth beam width in
degrees.

● antennaelevationbeamwidth - Defines the antenna elevation beam width in
degrees.

● antennaazimuth - Defines the antenna azimuth degrees.

● antennaelevation - Defines the elevation azimuth degrees.

92

Universal PHY Layer Configuration

● antennatype - Defines the antenna type. If the antenna type is
unidirectional, location event information for both the transmitter
and receiver are required as inputs to the Universal PHY Layer for
receive packet processing unless default connectivity mode is
engaged.

● subid - Defines the Universal PHY Layer subid. The Universal PHY
Layer is used by multiple NEM definitions. In order to differentiate
between Universal PHY instances for different waveforms, the subid
is used as part of the unique waveform identifying tuple: PHY Layer
Registration Id, Universal PHY subid and packet center frequency.

93

Universal PHY Upstream Packet Flow

94

Demonstration 8

This demonstration deploys a four node centralized IEEE 802.11abg
NEM emulation experiment. The goal of this demonstration is to become
familiar with Universal PHY Layer directional antenna support.

95

Demonstration 8

96

RF Pipe MAC Layer

97

RF Pipe MAC Layer

● Data/Burst rate emulation of bandwidth: On the transmit side
(downstream), a delay between packets based on packet size and
configured data rate is applied.

● Delay between packet transmissions is applied after packet transmission.

● The computed delay is sent to the Universal PHY Layer and is included in the
Common PHY Header as message duration.

● Bandwidth is a per node limit and not an overall network limit.

● Transmission delay emulation - Upstream RF Pipe MAC Layer will
compute and apply a transmission delay for each packet before
sending it up the stack.

transmissionDelay = messageDuration + delay + jitter + propagationDelay

– delay - Configuration parameter delay

– jitter - configuration parameter jitter

– messageDuration - Provided by the transmitter via the Common PHY Header

– propagationDelay - Provided by the Universal PHY Layer when node positions are
available via location events

98

RF Pipe MAC Layer

● Use of user defined Packet Completion Rate (PCR) curves as a
function of SINR.

● RF Pipe MAC Layer does not apply any additional interference effects and as
such, the use of negative SINR values within the PCR Curve file is valid only
when noise processing is enabled within the Universal PHY Layer to raise the
noise floor above the inherent receiver sensitivity.

99

RF Pipe MAC Layer Configuration

● enablepromiscuousmode - Determines if all packets received over-
the-air will be sent up the stack regardless of the destination NEM Id.

● enabletighttiming - Determines if the over-the-air time
rxTime - txTime should be included in the overall packet delay time.
Implies that the source and destination are in tight time sync.

● transmissioncontrolmap - Defines the data rate, frequency, and
power level to be used by the PHY Layer for all transmissions to a
specified node. When a packet is transmitted to the destination
NEM, the MAC Layer will send an accompanying control message to
the PHY Layer that will cause the specified data rate, frequency and
transmit power to be included in the Common PHY header.

● datarate - Defines the data/burst rate in Kbps of the waveform being
emulated. It is used on the transmit side (downstream) to compute
transmission delay based on the packet size and data rate. The RF
Pipe MAC Layer will wait for the message delay to expire before
transmitting another packet.

100

RF Pipe MAC Layer Configuration

● delay - Defines the delay in microseconds that is to be included in
the transmission delay. The delay is added to the delay introduced
by the datarate} parameter.

● jitter - Defines the jitter in microseconds to be included to the
transmission delay. The jitter will be computed for each packet
transmission based on uniform random distribution between +/- the
configured jitter value.

● pcrcurveuri - Defines the absolute file name that contains the
SINR/PCR curve values. A minimum of one SINR/PCR pair is
required, POR=0.0 and POR=100.0. Entries shall be in unique
ascending order with up to two decimal places of precision for SINR.
The PCR values shall represent the percentage with up to two
decimal places of precision.

101

RF Pipe MAC Layer Configuration

● flowcontrolenable - Enables downstream traffic flow control with
Virtual Transport.

● Only valid when using the Virtual Transport

● Setting to either on or off must match the setting of flowcontrolenable within the
Virtual Transport configuration.

● flowcontroltokens - Defines the number of flow control tokens.
This is an optional parameter used to override the default token
setting when flowcontrolenable is on.

102

Packet Completion Rate

● The RF Pipe Packet Completion Rate is specified as a curve defined
via XML.

● Curve definition comprised of a series of SINR values along with their
corresponding probability of reception.

● Linear interpolation is preformed when an exact SINR match is not found.

● Specifying a packet size in the curve file will adjust the POR based
on received packet size. Specifying a pktsize of 0 disregards
received packet size when computing the POR.

POR = POR
o

S1/S0

POR
o
 - POR value determined from the PCR curve for the given SINR value

S
0
 - Packet size specified in the curve file

S
1
 - Received packet size

103

Packet Completion Rate

104

RF Pipe Upstream Packet Flow

105

RF Pipe Downstream Packet Flow

106

Demonstration 9

This demonstration deploys a seven node nine NEM centralized RF Pipe
emulation experiment. The goal of this demonstration is to become
familiar with using the RF Pipe MAC Layer to create surrogate waveform
NEM definitions.

107

Demonstration 9

108

IEEE 802.11abg MAC Layer

109

IEEE 802.11abg MAC Layer

● Supports flow control with the Virtual Transport

● Supports the following waveform modes and data rates with the
appropriate timing:

● 802.11b (DSS rates: 1, 2, 5.5 and 11 Mbps)

● 802.11a/g (OFDM rates: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps)

● 802.11b/g (DSS and OFDM rates)

● Supports only the DCF channel access function. PCF and beacon
transmissions are not supported.

● Supports both unicast and broadcast transmissions.

● Unicast transmissions include the ability to emulate control message (RTS/CTS)
behavior as well as retries without actually transmitting the control messages or
the re-transmission of the data message.

● The emulation of unicast does not replicate exponential growth of the contention
window as a result of detected failures.

110

IEEE 802.11abg MAC Layer

● Supports Wi-Fi multimedia (WMM) capabilities.

● Initial implementation supports the ability to classify four different traffic classes
(Background, Best Effort, Video and Voice) where the higher priority classes
(voice and video) are serviced first.

● Supports user defined Packet Completion Rate (PCR) curves as a
function of SINR.

● Default curves are provided for each of the supported 802.11
modulation and data rate combinations.

● Default curves are based on theoretical equations for determining Bit Error Rate
(BER) in an Additive White Gaussian Noise (AWGN) channel.

● Adjusts the interference on a per packet basis based on detected
collisions and as such supports negative SINR values as can be
seen in the default curves.

111

IEEE 802.11abg MAC Layer
Configuration

● mode - Defines the 802.11 mode.

● enablepromiscuousmode - Determines if all packets received over-
the-air will be sent up the stack regardless of the destination NEM Id.

● distance - Defines the maximum distance in meters for supported
point to point links within the network. This is used to adjust the slot
timing to account for round trip propagation delays.

slotTime = fixedSlotTime + propagationTime

fixedSlotTime = 9

propagationTime = distance/300

● unicastrate - Defines the data rate index to be used for all unicast
transmissions. The rate selection must be valid for the mode
selected.

● multicastrate - Defines the data rate index to be used for all
multicast transmissions. The rate selection must be valid for the
mode selected.

112

IEEE 802.11abg MAC Layer
Configuration

● rtsthreshold - Defines the minimum packet size in bytes required to
trigger RTS/CTS for unicast transmissions.

● A value of 0 disables RTS/CTS.

● The effect of RTS/CTS for unicast transmissions is emulated using a statistical
model

● wmmenable - Provides the ability to enable the WiFi Multimedia
(WMM) type feature.

● Current capability supports the ability to service packets from a higher priority
queue first and does not yet support the internal contention based logic as
defined by 802.11e.

● pcrcurveuri - Defines the absolute file name that contains the
SINR/PCR curve values. A minimum of two SINR/PCR row entries
per data rate are required, POR=0.0 and POR=100.0. Entries shall
be in unique ascending order with up to two decimal places of
precision for SINR. The PCR values shall represent the percentage
with up to two decimal places of precision.

113

IEEE 802.11abg MAC Layer
Configuration

● flowcontrolenable - Enables downstream traffic flow control with
Virtual Transport.

● Only valid when using the Virtual Transport

● Setting to either on or off must match the setting of flowcontrolenable within the
Virtual Transport configuration.

● flowcontroltokens - Defines the number of flow control tokens.
This is an optional parameter used to override the default token
setting when flowcontrolenable is on.

● queuesize - Defines the size of the queue for the given access
category. When wmmenable is off only access category 0 is used.

● cwmin - Defines the minimum contention window in slots for the
appropriate access category. This value is used when calculating the
overall packet duration. When wmmenable is off only access
category 0 is used.

114

IEEE 802.11abg MAC Layer
Configuration

● cwmax - Defines the maximum contention window in slots for the
appropriate access category. Not currently used for point-to-point
failure exponential growth. When wmmenable is off only access
category 0 is used.

● aifs - Defines the Arbitration Inter Frame Space (AIFS) time factor in
slots for the appropriate access category. When wmmenable is off
only access category 0 is used.

● The inter frame space time in microseconds is computed as follows:

time = aifs*slotduration + sifs

slotduration is a function of distance.

– sifs is a function of the 802.11 mode.

115

IEEE 802.11abg MAC Layer
Configuration

● txop - Defines the maximum time in microseconds a packet can
reside within the queue for a given access category. When
wmmenable is off only access category 0 is used.

● Once the packet enters the MAC queue and is not serviced for this time, it will be
discarded and not transmitted.

● Setting the value to 0 disables the feature and will service all packets regardless
of duration in the queue.

● retrylimit - Defines the number of retries permitted for the unicast
messages for the appropriate access category. When wmmenable
is off only access category 0 is used.

116

Packet Completion Rate

● Packet Completion Rate is specified as curves defined via XML.

● The curve definitions are comprised of a series SINR values along with their
corresponding probability of reception.

● A curve definition must contain a minimum of two points with one SINR
representing POR=0 and one SINR representing POR=100.

● Linear interpolation is preformed when an exact SINR match is not found.

● Specifying a packet size in the curve file will adjust the POR based
on received packet size. Specifying a pktsize of 0 disregards
received packet size when computing the POR.

POR = POR
o

S1/S0

POR
o
 - POR value determined from the PCR curve for the given SINR value\\

S
0
 - Packet size specified in the curve file

S
1
 - & Received packet size

117

118

IEEE 802.11abg Upstream Packet Flow

119

IEEE 802.11abg Downstream Packet Flow

120

Demonstration 10

This demonstration deploys a four node centralized IEEE 802.11abg and
RF Pipe emulation experiment. The goal of this demonstration is to
become familiar with using the IEEE 802.11abg MAC Layer and to
understand its noise processing capabilities.

121

Comm Effect Shim Layer

122

Comm Effect Shim Layer

● The Comm Effect Shim Layer provides the ability to define the
following network impairments:

● Loss - Percentage of packets that will be dropped utilizing a uniform loss
distribution model.

● Latency - Average delay for a packet to traverse the network. The total delay is
composed of a fixed and variable component. The fixed amount of the delay is
defined via a latency configuration parameter and the variable amount via a jitter
configuration parameter.

● Duplicates - Percentage of packets that will be duplicated at the receiver.

● Unicast Bitrate: Bitrate for packets destined for the NEM or handled in
promiscuous mode.

● Broadcast Bitrate: Bitrate for packets destined for the NEM broadcast address.

● The network impairments can be controlled via two mechanisms:

● Comm Effect Events

● Static filter based impairments

123

Comm Effect Shim Layer Configuration

● defaultconnectivity - Defines the default communication effects of
all NEMs at start up prior to receiving any Comm Effect events. All
filter rules, if any, are still processed regardless of whether
defaultconnectivity is in use.

● filterfile - The absolute file name of the Comm Effect filter file to
load.

● groupid - Defines the NEM Group Id which will be used to group
NEMs by the assigned Id value. When an NEM is assigned to a
group it can only receive traffic from other members of the same
group regardless of communication effects.

● If set to 0, the NEM is not associated with an NEM Group.

● If set greater than 0, the NEM is associated with the NEM Group of the same
value.

● enablepromiscuousmode - Determines if all packets received over-
the-air will be sent up the stack regardless of the destination NEM Id.

124

Comm Effect Shim Layer Configuration

● enabletighttimingmode - Determines whether transmission time of
the packet will be factored in when calculating delivery scheduling
time.

● receivebufferperiod - Specify the max sum of buffering time in
seconds for packets received from an NEM.

● The buffering interval for each packet is determined by the bitrate for the source
NEM and packet size.

● Packets are placed in a timed queue based on this interval.

● Any packets that would cause the receive buffer period to be exceeded are
discarded.

● A value of 0.0 disables the limit and allows all received packets to stack up in the
queue.

125

Comm Effect Shim Upstream Packet Flow

126

Demonstration 11

This demonstration deploys a ten node distributed Comm Effect
emulation experiment. The goal of this demonstration is to become
familiar with using the Comm Effect Model and the Comm Effect
Controller application.

127

Virtual Transport

128

Virtual Transport

● Creates a virtual interface for use as the emulation/application
domain boundary.

● IPv4 and IPv6 Capable - Supports IPv4 and IPv6 virtual interface
address assignments and packet processing.

● Flow Control - Supports flow control with a corresponding flow
control capable NEM layer in order to provide feedback between the
emulation stack and application domain socket queues.

● Virtual Interface Management - Supports configuring virtual interface
addresses or can be configured to allow virtual interfaces to be
managed externally, for example via DHCP.

● Raw Transport Interoperability - Supports interoperability with Raw
Transport emulation/application domain boundaries using ARP
caching to learn network/NEM Id associations.

129

Virtual Transport

● Bitrate Enforcement - Supports bitrate enforcement for use with
models that do not limit bitrate based on emulation implementation.

● Broadcast Only Mode - Supports forced NEM broadcasting of all IP
packet types: unicast, broadcast and multicast.

130

Virtual Transport Configuration

● address - Virtual device address. Supports IPv4 and IPv6.

● arpcacheenable - Enable ARP request/reply monitoring to map
ethernet address to NEM.

● arpmode - Enable ARP on the virtual device.

● bitrate - Transport bitrate in Kbps. This is the total allowable
throughput for the transport combined in both directions (upstream
and downstream). A value of 0 disables the bitrate feature.

● broadcastmode - Broadcast all packets to all NEMs.

● device - Virtual device name.

● devicepath - Path to the tap device.

131

Virtual Transport Configuration

● flowcontrolenable - Enables downstream traffic flow control with a
corresponding flow control capable NEM layer. The
flowcontrolenable parameter value must match the setting of the
corresponding NEM layer's flowcontrolenable parameter.

● mask - Virtual device network mask. Supports IPv4 and IPv6.

132

Flow Control

● Supports flow control using a token based exchange mechanism
performed in coordination with a corresponding NEM layer.

● flow control token - Packet transmission unit where a single token represents
permission for the transport to transmit a single packet downstream to a
coordinating NEM layer.

● Flow control must be enabled on both the transport and the coordinating flow
control capable NEM layer

● Number of tokens available is specified by the coordinating flow
control capable NEM layer

● Flow control enabled layer sends a control message to the Virtual
Transport specifying the number of tokens available and then waits
for the transport to acknowledge receipt of the token count.

● Any downstream packets received from the transport in the period between when
the token count control message is sent and the acknowledgment is received are
discarded.

133

Flow Control

● When the Virtual Transport starts, it sends a control message to the
flow control enabled layer requesting the current token count.

● No downstream packets are transmitted to the flow control enabled layer until the
flow control token count control message is received.

● Once received, the transport will send an acknowledgment control
message.

● This acknowledgment will satisfy the flow control enabled component in the
situation where it was started prior to the transport and was blocked waiting for a
previous acknowledgment.

● The Virtual Transport decrements its token count each time it sends
a downstream packet.

● When the token count reaches zero no further packets are transmitted causing
application socket queues to backup.

● The flow control enabled layer shadows the token count of the transport in order
to detect when the transport has run out of tokens.

134

Flow Control

● Once available, the flow control enabled layer will send a flow control
token count message restarting the process.

● If either flow control component, the Virtual Transport or the
coordinating layer restarts, the token count will resync automatically.

135

Virtual Transport Upstream Packet Flow

136

Virtual Transport Downstream Packet Flow

137

Demonstration 12

This demonstration deploys a ten node centralized RF Pipe emulation
experiment. The goal of this demonstration is to become familiar with
using the Virtual Transport and its flow control capability.

138

Raw Transport

139

Raw Transport

● The Raw Transport uses a specific network interface as the
application/emulation boundary.

● IP packets read from the interface are encapsulated and transmitted
to the Transport's respective NEM for downstream processing.

● Packets received upstream from the Transport's associated NEM are
processed and transmitted out the specified network interface.

140

Raw Transport Configuration

● bitrate - Transport bitrate in Kbps. This is the total allowable
throughput for the transport combined in both directions (upstream
and downstream). A value of 0 disables the bitrate feature.

● broadcastmode - Broadcast all packets to all NEMs

● arpcacheenable - Enable ARP request/reply monitoring to map
ethernet address to NEM.

● device - Device to use as the raw packet entry point. Once a
network device has been dedicated to a Raw Transport it should not
be used for any other communication other than what should be
routed into the emulation domain.

141

Transport Interoperability

● There is no guarantee that heterogeneous transports can be used in
a given deployment.

● The Transport API is designed to allow transports to transmit opaque data to and
from their respective NEM stacks. The format of the data is implementation
dependent.

● Both the Virtual Transport and Raw Transport route Ethernet frames.
There are two configuration options that will allow both transports to
communicate with each other: ARP Cache and Broadcast mode.

● When arpcacheenable is enabled, each transport will peek at ARP
response packets that are sent upstream from their respective NEM
stacks in order to build a table of destination addresses and
associated NEM Ids.

● When broadcastmode is enabled, all packets are delivered using
the NEM broadcast address. Each inbound transport will attempt to
deliver the unicast Ethernet frames and rely on the kernel to drop all
packets that do not match the host.

142

Raw Transport Upstream Packet Flow

143

Raw Transport Downstream Packet Flow

144

Demonstration 13

This demonstration deploys a ten node centralized RF Pipe emulation
experiment. The goal of this demonstration is to become familiar with
using the Raw Transport and the Pathloss Controller application.

145

Mitre Mobility Model Event Generator

146

Mitre Mobility Model Event Generator

● The Mitre Mobility Model Event Generator creates pathloss and/or
location events from input files in Mitre Mobility Format. The file
contains pathloss and location information between nodes on one
second boundaries.

147

Mitre Mobility Model Event Generator
Configuration

● inputfileformat - Absolute file name of mobility file. One or more
files may be specified by using a printf() style convention using the
inputfilecount configuration item as an index.

● inputfilecount - Total number of input files. If the inputfilename
contains a printf() style expression the count will be used as an
index when creating the file names.

● totalnodes - Total number of nodes whose data is contained in the
mobility files.

● maxnemidpresent - Maximum NEM Id present in the emulation
experiment. This value is used to reduce the number of events
generated when a subset of nodes from the larger mobility data are
used.

148

Mitre Mobility Model Event Generator
Configuration

● repeatcount - The number of times the mobility data should be
parsed and events generated. A repeatcount of 1 simply means to
process the file once, generating events, and stop when the file is
complete. A value greater than 1 allows you to process the data
repeatcount times. A value of 0 will process the data repeatedly,
restarting indefinitely.

● utmzone - The UTM zone that corresponds to the UTM position
information contained in the mobility data. This is required to convert
the data when generating location events. A limitation of the Mitre
Mobility Model format is that position data cannot cross UTM zones.

● entryreplay - Specify one or more space separated time:count pairs.
Effectively allows you to hold at certain mobility entries for a specified
amount of time.

● A value of "0:120 3600:1800" would use the data at mobility entry T
0
 for 2

minutes, sending out the T
0
 events 120 times and use the data at T

3600
 for 30

minutes.

149

Mitre Mobility Model Event Generator
Configuration

● publishpathlossevents - Create/Publish pathloss events from
mobility model input files.

● publishlocationevents - Create/Publish location events from
mobility model input files

150

Mitre Mobility Model Format

● Mitre Mobility Model Format is an ASCII text file containing a single
entry for every pair of nodes in the mobility scenario on one second
boundaries.

● For each second, the number of entries required to completely
describe the connectivity for N nodes can be represented by the
following equation:

● The Mitre Mobility Model text file contains eleven columns as defined
below:

1. Time in Seconds

2. Node Target A

3. Node Target B

4. Pathloss between nodes. A single value denotes symmetric pathloss. Two
values separated by a '/' denotes asymmetric pathloss. Where the first value is
the pathloss from Node A to Node B and the second value is the pathloss from
Node B to Node A.

∑i=1

N−1
N−i

151

Mitre Mobility Model Format

5. Distance between nodes in meters

6. Node A UTM X position

7. Node A UTM Y position

8. Node A Antenna Height (altitude) in meters

9. Node B UTM X position

10. Node B UTM Y position

11. Node B Antenna Height (altitude) in meters

152

Demonstration 14

This demonstration deploys a ten node distributed IEEE 802.11abg NEM
emulation experiment. The goal of this demonstration is to become
familiar with the Mitre Mobility Model Event Generator.

153

Emulation Script Event Generator

154

Emulation Script Event Generator

● The Emulation Script Event Generator creates location events from
input files in the Emulation Script Format. Emulation Script Format
was developed by the Protean Research Group at Naval Research
Laboratory [Protean Research Group, 2010]. The file contains
location information between nodes on specific time boundaries.

155

Emulation Script Event Generator
Configuration

● inputfile - Absolute file name of the emulation script mobility input
file.

● One or more files may be specified by using this parameter multiple times and
modifying the value attribute accordingly.

● Files are processed in the order they appear in the XML.

● totalnodes - Total number of nodes whose data is contained in the
files.

● repeatcount - The number of times the data should be parsed and
events generated. A repeatcount of 1 simply means to process the
file once, generating events, and stop when the file is complete. A
value greater than 1 allows you to process the data repeatcount
times. A value of 0 will process the data repeatedly, restarting
indefinitely.

● schemalocation - Specifies the location of the schema file used to
validate files specified via inputfile parameters.

156

Emulation Script Data Format

● Emulation Script Format is an XML file containing Event elements.
Each element contains two child elements:

● time - Specifying the amount of time in seconds that has elapsed since the start
(initial event).

● Node - Specifying the Id (using an attribute) and the location (using a child
element) of a given node in the network.

● See [Protean Research Group, 2010] for a more detailed description
of Emulation Script Format.

157

Emulation Script Data Format

● Emulation Script Format is an XML file containing Event elements.
Each element contains two child elements:

● time - Specifying the amount of time in seconds that has elapsed since the start
(initial event).

● Node - Specifying the Id (using an attribute) and the location (using a child
element) of a given node in the network.

● See [Protean Research Group, 2010] for a more detailed description
of Emulation Script Format.

158

Emulation Script Data Format

159

Demonstration 15

This demonstration deploys a ten node distributed RP Pipe NEM
emulation experiment. The goal of this demonstration is to become
familiar with the Emulation Script Generator.

160

Emulation Event Log Generator

161

Emulation Event Log Generator

● The Emulation Event Log (EEL) Generator creates EMANE events
from input files in EEL Format. EEL format was developed by the
Protean Research Group at Naval Research Laboratory [Protean
Research Group, 2010].

● The EEL Event Generator loads EEL sentence parsing plugins to
parse and build EMANE events.

● Plugins are associated with event type keywords and are capable of
producing either full or delta event updates.

● A delta event update contains events corresponding to EEL entries loaded since
the last request for events made to the plugin.

● A full event update contains all the EMANE events necessary to convey the
complete current state for all information loaded by the respective plugin.

● Any EEL entries encountered that are not handled by a loaded
parser are ignored.

162

Sentence Parsing Plugins

● Pathloss Parser - Parses pathloss sentences and builds the resulting
event.

<time> nem:<Id> pathloss nem:<Id>,<pathloss>[,<reversePathloss>]
[nem:<Id>,<pathloss>[,<reversePathloss>]]...

pathoss - Pathloss in dB.

reversePathloss - Reverse Pathloss in dB

● Location Parser - Parses location sentences and builds the resulting
event.

<time> nem:<Id> location <latitude>,<longitude>,<altitude>[,msl|agl]

latitude - Latitude in degrees.

longitude - Longitude in degrees.

altitude - Altitude in meters.

163

Sentence Parsing Plugins

● Antenna Direction Parser - Parses antenna direction sentences and
builds the resulting event.

<time> nem:<Id> antennadirection
<elevation>,<azimuth>,<elevationBeamWidth>,<azimuthBeamWidth>

● elevation - Antenna elevation in degrees.

● azimuth - Antenna azimuth in degrees.

● elevationBeamWidth - Antenna elevation beam width in degrees.

● azimuthBeamWidth - Antenna azimuth beam width in degrees.

164

Emulation Event Log Generator
Configuration

● inputfile - Absolute file name of the EEL input file.

● Additional EEL files may be specified using multiple inputfile parameters.

● Files are processed in the order they appear in the XML.

● loader - Map EEL event type keywords to EEL loader plugins.

<eventType>:<Plugin Name>:[full|delta]

● The optional full or delta determines whether events produced from the plugins
represent only the new EEL entries processed since the last request for events or
the complete current cached state.

● The default specification is delta.

165

Emulation Event Log Format

● For more information on Emulation Event Log Format see [Protean
Research Group, 2010].

166

Demonstration 16

This demonstration deploys a ten node distributed RP Pipe NEM
emulation experiment. The goal of this demonstration is to become
familiar with the Emulation Event Log Generator.

167

Comm Effect Event Generator

168

Comm Effect Event Generator

● The Comm Effect Event Generator creates Comm Effect events from
input files in the Comm Effect Impairment Format. The file contains
impairment information between nodes on one second boundaries.

169

Comm Effect Event Generator
Configuration

● inputfile - Absolute file name of the impairment file.

● Additional impairment files may be specified using multiple inputfile parameters.

● Files are processed in the order they appear in the XML.

● totalnodes - Total number of nodes whose data is contained in the
impairment file(s).

● maxnemidpresent - Maximum NEM Id present in the emulation
experiment. This value is used to reduce the number of events
generated when a subset of nodes from the larger Comm Effect data
are used.

● repeatcount - The number of times the impairment data should be
parsed and events generated. A repeatcount of 1 simply means to
process the file once, generating events, and stop when the file is
complete. A value greater than 1 allows you to process the data
repeatcount times. A value of 0 will process the data repeatedly,
restarting indefinitely.

170

Comm Effect Event Generator
Configuration

● entryreplay - Specify one or more space separated time:count pairs.

● Effectively allows you to hold at certain impairment entries for a specified amount
of time.

● A value of "0:120 3600:1800" would use the data at impairment entry T
0
 for 2

minutes, sending out the T
0
 events 120 times and use the data at T

3600
 for 30

minutes.

171

Comm Effect Impairment Format

● Comm Effect Impairment Format is an ASCII text file containing a
single entry for every pair of nodes in the scenario on one second
boundaries. For each second, the number of entries required to
completely describe the impairments for N nodes can be represented
by the following equation:

● The Comm Effects Impairment text file contains eleven columns as
defined below:

1. Time in seconds

2. NEM A Target

3. NEM B Target

4. Latency (seconds) - Second component of the average delay to be introduced for
packets between NEM A and NEM B. A single value denotes symmetry and two
values separated by a '/' denotes asymmetric latency between the NEM pairs.

5. Latency (microseconds) - Microsecond component of the average delay to be
introduced for packets between NEM A and NEM B. A single value denotes
symmetry and two values separated by a '/' denotes asymmetric latency between
the NEM pairs.

∑i=1

N−1
N−i

172

Comm Effect Impairment Format

6. Jitter (seconds) - Second component of the jitter on the delay to be introduced for
packets between NEM A and NEM B. A single value denotes symmetry and two
values separated by a '/' denotes asymmetric jitter between the NEM pairs.

7. Jitter (microseconds) - Microsecond component of the jitter on the delay to be
introduced for packets between NEM A and NEM B. A single value denotes
symmetry and two values separated by a '/' denotes asymmetric jitter between the
NEM pairs.

8. Loss (percentage) - Loss percentage to be introduced between NEM A and NEM
B. A single value denotes symmetry and two values separated by a '/' denotes
asymmetric loss between the NEM pairs.

9. Duplicates (percentage) - The duplicate percentage to be introduced between
NEM A and NEM B. A single value denotes symmetry and two values separated
by a '/' denotes asymmetric duplication between the NEM pairs.

10. Unicastbitrate (bps) - The bitrate to be introduced between NEM A and NEM B for
packets addressed to the NEM or handled in promiscuous mode. A single value
denotes symmetry and two values separated by a '/' denotes asymmetric bitrate
between the NEM pairs.

11. Broadcastbitrate (bps) - The bitrate to be introduced between NEM A and NEM B
for packets sent the NEM Broadcast Address. A single value denotes symmetry
and two values separated by a '/' denotes asymmetric bitrate between the NEM
pairs.

173

Comm Effect Impairment Format

174

Demonstration 17

This demonstration deploys a ten node distributed Comm Effect NEM
emulation experiment. The goal of this demonstration is to become
familiar with the Comm Effect Event Generator.

175

Antenna Direction Event Generator

176

Antenna Direction Event Generator

● The Antenna Direction Event Generator creates antenna direction
events from input files in the Antenna Direction format. The file
contains node based antenna profile and pointing information on one
second boundaries.

177

Antenna Direction Event Generator
Configuration

● inputfileformat - Absolute file name of the antenna direction file.
One or more files may be specified by using a printf() style
convention using the inputfilecount configuration item as an index.

● inputfilecount - Total number of input files. If the inputfilename
contains a printf() style expression the count will be used as an
index when creating the file names.

● totalnodes - Total number of nodes whose data is contained in the
antenna direction file.

● repeatcount - The number of times the antenna direction data
should be parsed and events generated. A repeatcount of 1 simply
means to process the file once, generating events, and stop when
the file is complete. A value greater than 1 allows you to process the
data repeatcount times. A value of 0 will process the data
repeatedly, restarting indefinitely.

178

Antenna Direction Format

● Antenna Direction Format is an ASCII text file containing a single
entry for every node using directional antenna on one second
boundaries.

● The Antenna Direction text file contains eleven columns as defined
below:

1. Time in Seconds

2. Node Target

3. Antenna Elevation in degrees

4. Antenna Azimuth in degrees

5. Antenna Elevation Beam Width in degrees

6. Antenna Azimuth Beam Width in degrees

179

Antenna Direction Format

180

Demonstration 18

This demonstration deploys a four node centralized IEEE 802.11abg
NEM emulation experiment. The goal of this demonstration is to become
familiar with the Antenna Direction Event Generator.

181

GPSd Location Agent

182

GPSd Location Agent

● The GPSd Location Agent uses a pseudo terminal to emulate a GPS
Receiver.

● Received location events are used to generate NMEA strings which
are written to a pseudo terminal in order to make position information
available to any application capable of parsing NMEA strings.

183

GPSd Location Agent Configuration

● gpsdcontrolsocket - The name of the GPSd control socket for
adding the pseudo terminal to the device list. The control socket is
used when the GPSd Location Agent instance should attempt to
connect to GPSd. Only used when gpsdconnectionenabled is set
to on.

● pseudoterminalfile - The name of the file to create containing the
name of the pseudo terminal in use by the GPSd Location Agent.
Only created when gpsdconnectionenabled set to off.

● gpsdconnectionenabled - Switch to set GPSd Location Agent to
either actively connect to GPSd (on) or instead create a file
containing the name of the pseudo terminal currently in use (off).

184

Demonstration 19

This demonstration deploys a ten node distributed IEEE 802.11abg NEM
emulation experiment. The goal of this demonstration is to become
familiar with the GPSd Location Agent.

185

Python Event Service Bindings

186

Python Event Service Bindings

● The Python Event Service bindings allow for the creation of custom
Python scripts which can interact with the EMANE Event Service
using libemaneventservice, a C language library for developing
embedded event processing applications.

● The Event Service Python bindings are comprised of bindings for the
Event Service and the four standard EMANE events: Location,
Pathloss, Comm Effect and Antenna Direction.

187

libemaneeventservice Configuration

libemaneventservice will search for its configuration in three locations
before falling back and using application defaults. The search order
is as follows:

1. If the environment variable LIBEMANEEVENTSERVICECONFIG exists, it will
be used. This variable must be set to a configuration file name.

2. If $HOME/.libemaneeventservice.xml exists, it will be used.

3. If /etc/libemaneeventservice.xml exists, it will be used.

4. The default values are: group 224.1.2.8, port 45703, multicast loop enabled (1),
TTL 32. No default multicast device is specified. The kernel routing table is used.

188

Demonstration 20

This demonstration uses two sample Python scripts to illustrate how to
use the Python Event Service bindings.

189

Python EMANE Bindings

190

Python EMANE Bindings

● The EMANE Library Python bindings are contained in the Python
emane module.

● By importing the emane module, a Python script can configure and
run the equivalent of any of the EMANE applications: emane,
emanetransportd, emaneeventservice and emaneeventd.

● Configuration is performed via Python tuples and does not require
XML configuration.

● Access to the EMANE logger allows log level and log destination
configuration, similar to the application logger command line
arguments.

191

Demonstration 21

This demonstration deploys a ten node distributed RF Pipe NEM
emulation experiment. Each node executes a Python script similar to the
one developed above.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191

