Multicast Dissemination Protocol (MDP) Developer's Guide

Brian Adamson
Newlink Global Engineering Corporation
<adamson@itd.nrl.navy.mil>

Joe Macker
Naval Research Laboratory
<macker@itd.nrl.navy.mil>

1.0

2.0

3.0

4.0

5.0

Table of Contents

INntroduction e 5
MDP Application Programming Interface (API) Overview 5
MDP API Initialization i 6
31 Useof Mdplnit() 6
Function MdpInit() 7
Function MdpGetLocalNodeld() 7
Function MdpSetLocalNodeld() 8
3.2 Protocol Engine Callback Functions 8
Function MdpSetTimerinstallerCallback() 9
TimerinstallCallback Description 9
Function MdpDoTimers() 11
Function MdpSetSocketinstallerCallback() 11
SocketlnstallCallback Description 12
Function MdpReadSocket() 13
Function MdpSetNotifyCallback() 14
MdpNotifyCallback Description 14
MdpNotifyCallback Guidelines 16
MdpNotifyCallback Notification Events 17
MDP API Variable Types 20
4.1 MDP API Variable Type Definitions 20
42 MDPDefaultsandConstants 21
MdpSession Management Functions 22
5.1 MdpSession Creation and Destruction 22
Function MdpNewSession() 22
Function MdpDeleteSession() 23
52 MdpSession General Control 23
Function MdpSession&tTxRate() 24
Function MdpSessionSetSatusReporting() 25
Function MdpSessionSetTOS))o oo 25
Function MdpSessionSetMulticastinterfaceAddress() 27
Function MdpSessionSetMulticastLoopback() 27
Function MdpSessionSetRobustFactor() 28
53 MdpSession Server Operation, 29

2

Function MdpSessionOpenServer() oo oo oot 30

Function MdpSessionCloseServer() 32
Function MdpSessionQueueTxFile() 33
Function MdpSessionQueueTxDataObject() 34
Function MdpSessionRemoveTxObject() 36
Function MdpSessionSetCongestionControl() 36
Function MdpSessionSetAutoParity() 37
Function MdpSessionSetServerEmcon() 37
Function MdpSessionAddAckingClient() 38
Function MdpSessionRemoveAckingClient() 39
Function MdpSessionSetTxCacheDepth() 39
Function MdpSessionServer SetGrttEstimate() 40
Function MdpSessionServer GetGrttEstimate() 41
Function MdpSessionServer SetGrttMax() 41
Function MdpSessionSetGrttProbelnterval() 41
Function MdpSessionSetGrttProbing() 42
Function MdpSessionSetBaseObjectTransportld() 43
54 MdpSession Client Operation 43
Function MdpSessionOpenClient() 45
Function MdpSessionCloseClient() 46
Function MdpSessionAbortRxObject() 46
Function MdpSessionGetNodeAddress() 47
Function MdpSessionGetNodeGrttEstimate() 48
Function MdpSessionGetNodeNextRxObject() 48
Function MdpSessionDeactivateNode() 49
Function MdpSessionDeleteNode() 49
Function MdpSessionSetClientAcking() 50
Function MdpSessionSetClientUnicastNacks() 50
Function MdpSessionSetClientNackingMode() 51
Function MdpSessionSetClientStreamintegrity() 52
Function MdpSessionSetClientMulticastAcks() 53
Function MdpSessionSetArchiveDirectory() 53
Function MdpSessionSetArchiveMode() 54
Function MdpSession&etClientEmcon() 55
6.0 MdpObject Management Functions 56
Function MdpObjectGetType() 57
Function MdpObjectGetinfo() 57
Function MdpObjectGetSize() 58
Function MdpObjectGetRecvBytes() 58

3

Function MdpObjectGetTransportid() 59

Function MdpObjectGetSourceNodeld() 59
Function MdpObjectSetNackingMode() 60
Function MdpObjectSetData() 60
Function MdpObjectGetData() 61
Function MdpObjectGetFileName() 62
7.0 Miscellaneous Functions, 62
Function MdpSessionSetRecvDropRate() 62
Function MdpSessionSetSendDropRate() 63

1.0 Introduction

This document serves as a guide for developing reliable multicast applications using the MDP
Software Development Kit (SDK). The SDK consists of object libraries and header files
which allow developer’s to create applications using the MDP reliable multicast protocol.

2.0 MDP Application Programming Interface (APl) Overview

MDP is a transport protocol which allows data to be reliably transmitted from a source
(server) to a set of receivers. Normally, as its name implies, MDP is intended to use network
multicast transport, but it should be noted that the destination of data transmitted by an MDP
server can also be a unicast (point-to-point) network address. In some cases, MDP’s rate-
controlled, selective negative acknowledgment protocol design or other special features may
offer benefits for unicast transport of data. However, it is MDP’s utilization of multicast
service which allows the creation of very efficient one-to-many or many-to-many reliable data
communication applications and this is how it is anticipated that MDP will usually be utilized.
For more general information on multicast, please refer to [1].

To best understand how the MDP API is intended to be used, it is important to first establish
some terminology which reflects the design of the MDP protocol engine and the
corresponding API procedures. At the highest level, a call to the MdpInit () function
returns a handle to an instance of the MDP API. Using this MdplInstanceHandle, the
developer can then make other API calls to further init the API to operate within the context
of the developer’s application and go on to create and control instances of MDP reliable
multicast transport sessions.

MDP is intended to be used as a transport protocol and so the semantics of the API design
are centered around the notion of the transport of data from a server (source) node to one or
more client (receiver) nodes. Note that a single node may act as both server and client, and
that multiple servers may co-exist in the same MDP communications space allowing for the
creation of many-to-many communication applications. The “communications space” in
which the MDP protocol operates is defined by an IP network address (usually a Class D
multicast address) and a system User Datagram Protocol (UDP) port number. It is assumed
that the MDP developer has an a priori understanding of basic network communications
programming, and for further description of the principles involved there, please refer to [2].
This “communications space” which defines a single instantiation of the MDP transport
protocol is referred to in the MDP API as an MdpSession. Note the MDP API permits the
existence of multiple MdpSession instances so that applications requiring data exchange on
multiple, different multicast addresses or the creation of unicast/multicast or
multicast/multicast gateway applications may be created.

Within the context of a single MdpSession, multiple participants, referred to as MdpNodes,
exchange data using the reliability mechanisms of the underlying MDP protocol. Some (or
all) MdpNodes within an MdpSession, may act as servers (sources) while others may act as
clients (receivers). Data is transmitted from a server to the set of clients as a serialized
stream of MdpObjects. Each MdpObject consists of a file or static block of memory-resident
data which the server application has queued for transmission. Each MdpObject may also

5

optionally have a small amount of “out-of-band” MdplInfo associated with it to aid application
operation. Potential uses of the MdpInfo attachment will be discussed in more detail later in
this document.

The use of the API can be summarized with the following steps:

1 Initialize the MDP library and install appropriate callback functions for protocol engine
timing, packet input/output, and protocol event notification. (Note: The MDP library
is designed to use whatever timing facilities and receive packet notification
methodology the application designer specifies.)

2) Create on or more MDP sessions with appropriate multicast (or unicast) destination
addresses and port numbers.

3) Set any parameters for the newly created sessions which need to differ from default
values and need to be set prior to session startup.

4) “Open” the session as an MdpClient and/or MdpServer. (After opening a session as a
server, objects may be queued for transmission at any time)

5) Enter the application’'s primary event loop dispatching appropriate events to the
MdpDoTimers () and MdpReadSockets () API calls (These are explained in
detail later).

6) Handle notifications received from the MDP protocol engine with regards to newly
received objects or to queue additional objects for transmission. API calls are
available to retrieve information concerning MdpObjects received or queued for
transmission.

3.0 MDP API Initialization

The MDP library must be properly initialized before any of the other API functions can be
used. Also, as part of initialization, appropriate callback functions must be installed to
facilitate the operation of the MDP protocol engine. These callbacks include application-
defined functions for system timer usage and receive packet notification.

3.1 Useof MdpInit /()

The first step is to place a call to the function MdpInit () to create and partially initialize
and instance of the MDP API. This function has two optional parameters to allow the
application to set a local ASCII MdpNode name identifier and a 32-bit identification number
(MdpNodeld) for the local station. The MdpNodeld should be unique among all nodes in an
MdpSession. The default (NULL) values provided for these parameters will cause the
Mdplnit() function to attempt to learn the local default 1P address to use as the MdpNodeld
and resolve that address and determine the login name to establish a default local name in the
form of “user @hostname” .

Function Mdplnit()

SYNOPSIS
#include <mdpApi.h>
MdpInstanceHandle MdpInit (const char* localName =
(const char*)NULL,
MdpNodeId localld = MDP NULL_ NODE,
MdpError* error = NULL) ;
DESCRIPTION

The Mdplnit() function creates and partially initializes an instance of the MDP API. This
function should be only called once and must be called before any other MDP API functions
are used. The localName parameter should be a pointer to a NULL-terminated string with
a maximum length of MDP_NODE NAME_MAX characters. Using the MdpInit () function
in its default form (no arguments) will automatically pick a default MdpNodeld (using the
local host’s default IP address) and MdpNode name. The MDP library does this by making a
call to getlogin () (or cuserid () in some cases) and gethostname () to retrieve the
user’s name and the machines name. The machine’s name is resolved to an IP address with a
call to gethostbyname () and the 32-bit IP address (converted to host byte order) is used
as the local MdpNodeld. This technique usually produces a suitable default MdpNodeld
assignment method resulting in unique node identification. Note that in the case of the
tkMdp/winMdp/mdp example applications, the use of a a priori client positive
acknowledgment list depends upon the names/addresses in the list resolving to the address
picked by the client as its MdpNodeld. The 1ocalId parameter can be used to override this
default method of MdpNodeld assignment. The optional error parameter allows the
application to receive and error code if the call to Mdplnit() is unsuccessful.

RETURN VALUES

MdpInit () will return a handle to the instance of the MDP API created of type
MdplinstanceHandle. The appliation-provided error parameter will contain a value of

MDP_ERROR_NONE if successful. A return value of MDP_NULL_INSTANCE and other
error codes (TBD) are passed in the error parameter upon failure.

Function MdpGetL ocalNodel d()

SYNOPSIS
#include <mdpApi.h>

MdpNodeId MdpGetLocalNodeId (MdpInstanceHandle instance) ;

DESCRIPTION

The MdpGetLocalNodeId() function retrieves the local MdpNodeld for the MDP
instantiation designated by the instance parameter.

RETURN VALUES

MdpGetLocalNodeId () will return the local MdpNodeld upon success. A value of
MDP_NULL_NODE is returned if the instance parameter is NULL (invalid).

Function MdpSetL ocalNodel d()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSetLocalNodeId (MdpInstanceHandle instance,
MdpNodeId nodeId) ;

DESCRIPTION

The MdpSetLocalNodeId() function sets the local MdpNodeld for the MDP instantiation
designated by the instance parameter. The nodeId parameter indicates the value to be

used as the local hosts node identifier. A value of MDP_NULL_NODE is may not be used
as a node identifier.

RETURN VALUES

MdpGetLocalNodeId () will returns a value of MDP_ERROR_NONE upon success. A
value of MDP_ERROR_INSTANCE_INVALID or MDP_ERROR_NODE_INVALID may be
returned upon error.

3.2 Protocol Engine Callback Functions

After a successful call to MdpInit (), the next step the application should take is installing
appropriate callback functions for the returned MdpInstanceHandle to provide timing and
receive data event notification for the MDP protocol engine to function and to allow the MDP
protocol to alert the application of important events (e.g. received object completion, etc).
Different callback functions can be installed for different MDP API instances. The use of
callback functions for these core aspects of the current MDP SDK allows MDP to be very
portable to different operating systems and environments. Wherever possible, the MDP
library attempts to allow the application to control memory allocation and interface with the
operating system. (It is possible this will be further expanded in the future). While this
“open-ended” approach may seem complex, it allows for flexibility as the MDP API is further
refined. At some point in the future, it is possible that a higher level (less complex) API may
be created (and optimized) for specific operating systems and environments.

There are three primary callbacks which need to be installed. One is for the maintenance of a

8

single operating system timer which the MDP protocol engine will use for protocol timing
purposes. Although the MDP protocol implements multiple timeout events for operation, it
manages these timeouts with a single (application-provided) system timer. The second
callback function is used by MDP to notify the application of network socket file descriptor(s)
MDP has opened (or closed) so that the application can install (or remove) appropriate “data-
ready-to-be-read” monitors (e.g. for use with a select() system call or other asynchronous I/O
notification mechanism). The third callback is a function pointer to an MdpNotifyFunc which
is a user-defined function which MDP will call to notify the application of significant protocol
events or errors.

Function MdpSetTimer|nstaller Callback()

SYNOPSIS
#include <mdpApi.h>

void MdpSetTimerInstallCallback (

MdpInstanceHandle instance,

TimerInstallCallback* timerInstaller,

voidx userData) ;
DESCRIPTION

This function is used to install an application-provided TimerlInstallCallback function for the
MDP protocol engine to use. The TimerlInstallCallback is used by MDP to request the
application to install, modify, or remove the system timer which MDPv2 uses for protocol
timing.

The instance parameter must be a value obtained by the application from a previous call
to Mdplnit().

The timerInstaller parameter is a pointer to the TimerlnstallCallback the application
wishes MDP to use.

The value passed by the userData parameter is stored by MDP and MDP will later pass a
pointer to this stored value to the provided TimeriInstallCallback for the application to use.
This userData might be useful for an application to retrieve state associated with a specific
timer which has been installed or for some other application-defined use. The usage is
described below in more detail in the detailed description of the TimerInstallCallback function
the application must provide.

RETURN VALUE

The MdpSetTimerInstallerCallback () function returns no value.

TimerInstallCallback Description

The prototype for this application-provided callback function is given by:

typedef bool (TimerInstallCallback) (

9

ProtocolTimerInstallCmd c¢md,

void** timerId,
dogble dglay,
void* timerData,
void** userData) ;

The cmd parameter instructs the callback function on what action is to be taken. Possible
values for the cmd parameter include PROTOCOL_TIMER INSTALL,

PROTOCOL_TIMER MODIFY, and PROTOCOL_ TIMER REMOVE. These values correspond
to whether the system timer used by MDPv2 is to be newly installed, it’s timeout interval to
be changed, or if the timer is to be removed (cancelled). (Note: MDPv2 assumes the
application-installed system timer is a "one-shot" timer which needs
re-installation after it fires.)

The timerId parameter is currently provided for convenience. One purpose is that the
application may use it to store the value of a system-specific identifier for the timer which it
has installed for MDP. On subsequent calls to modify or remove the timer, MDP will provide
this parameter with the value previously set by the application.

IMPORTANT NOTE: It is recommended that new applications built with the MDP API do not
use the timer1d parameter. The userData parameter (described below) can be used for
whatever purpose the timer1d parameter might be used and future versions of the API will
likely eliminate this parameter in this callback function.

The delay parameter is used by MDP to inform the application of the timeout interval value
the application-installed system timer should use. The value is given in time units of seconds.
This parameter is not applicable for the case of cmd = PROTOCOL_TIMER_REMOVE.
Note that the value of delay can possibly equal zero.

The timerData parameter is a value used internally by the MDP protocol engine. This
value is passed to the TimerlInstallCallback because when the application-installed system
timer fires, the application must call the MdpDoTimers() API function passing this
timerData value as the parameter of the MdpDoTimers() function. In future versions of
the API, it may be possible for multiple instances the MDP API to co-exist (primarily for
simulation environments) so it is important to properly associate the timerData value
provided in calls to the TimerInstallCallback function with the resultant system timer
installed. The MdpDoTimers() function is used to dispatch MDP protocol timeout events to
the underlying protocol engine.

The userData parameter of the TimerInstallCallback supplies a pointer to the value stored
when the MdpSetTimerInstallCallback() function was called. Note that since a
pointer to this value is provided, the application may currently change this value. An example
use of userData is for the application to store a pointer to state that it needs to properly
install and maintain system timer resources.

IMPORTANT NOTE: It is recommended that new applications built with the MDP API are

10

structured so as to not change the value of the userData originally provided by the
application. For code safety reasons, it is highly likely that future versions of this callback
will provide the usexrData value directly and the application will be unable to change it
other than through a call to MdpSetTimerInstallCallback (). (Moral of the story:
Providing pointers to the guts of the protocol engine was a bad idea.)

The TimerlInstallCallback should return a value of frue on success and a value of false on
failure.

Function MdpDoTimers()

SYNOPSIS
#include <mdpApi.h>

double MdpDoTimers (void* timerData) ;

DESCRIPTION

The MdpDoTimers () function is used by the application to dispatch timeout events to the
MDP protocol engine. The timerData value passed to the MdpDoTimers () function should
equal the value passed to the application when the corresponding timer was “installed” or
“modified”. A call to MdpDoTimers () causes the MDP protocol engine to take whatever
action is appropriate as a result of timeout events. These actions include sending data,
installing other timeouts, and notifying the application (via the MdpNotifyCallback) of
important protocol events or errors. Note that the MDP protocol engine assumes that the
system timer which has fired (resulting in the current timeout event) was a one shot timer and
MDP will install a new system timer as needed. If the application environment is not using
one-shot timers, the application should take measures to remove or cancel the timer prior to
placing the call to MdpDoTimers ().

RETURN VALUES

The MdpDoTimers () call returns a floating point value equal to the time interval until the
next MDP system timer timeout event. A value of -1.0 is returned if no timeout event is
pending after the call to MdpDoTimers ().

Function MdpSetSocketInstallerCallback()

SYNOPSIS
#include <mdpApi.h>

void MdpSetSocketInstallCallback(

MdpInstanceHandle instance,
SocketInstallCallback* socketInstaller,
void=* userData) ;

11

DESCRIPTION

This function installs a SocketInstallCallback which is used by MDP to request the host
application to asynchronously “monitor” a socket file descriptor for received data to be read.
This allows an application to use whatever socket/file descriptor monitoring/notification
methodology that is appropriate for the given application’s implementation architecture. The
application-provided SocketInstallCallback is called whenever MDP “opens” or “closes” a
UDP socket.

The instance parameter must be a value obtained by the application from a previous call to
MdpInit(). The socketInstaller parameter is a pointer to the application-provided
SocketInstallCallback function. The userData parameter alows the application to store an
application-specific data value (e.g. pointer) which is passed back to the application when the
SocketInstallCallback is called by MDP.

RETURN VALUE
The MdpSetSocketInstallCallback () function returns no value.

IMPORTANT NOTE: As of version 1.7a7 of the MDP code, the SocketlnstallCallback is now
required for Win32 operation. Win32 has a few differenent mechanisms which could be
leveraged including a Berkeley Sockets-like “ select()” call, Window messages (e.g. using the
WSAAsyncSelect()” call - this is typical of many Win32 applications), or Events (e.g. where
“ WaitForMultipleEvents()” is used smilar to a “ select()” call). This API leaves all of these
options open to the programmer. In the future, it is hoped we will be able to provide more
tutorial information on use of the MDP API on different operating systems for different
applications. For now, refer to the example application code we provide.

SocketlnstallCallback Description

The SocketInstallCallback is defined by the following function prototype:
typedef bool (SocketInstallCallback) (

SocketInstallCmd cmd,
int fd,
void* socketData,
void** userData) ;

The ¢md parameter is used by MDP to indicate what action the application-provided
SocketInstallCallback should take. Possible cmd parameter values include

SOCKET INSTALL and SOCKET REMOVE. The SocketlnstallCallback is called with cmd
equal to SOCKET INSTALL after MDP has opened a socket for which it would like
notification for reading received data. The callback function will be called and the cmd
parameter will have value of SOCKET REMOVE when the corresponding socket has been
closed. The purpose is that the application begin monitoring the socket for possible received
data when the SOCKET INSTALL “command” is issued. The host application must call the
MDP API MdpReadSocket() function when data is available for reading on a given socket file
descriptor. This will cause the MDP protocol engine to read and process the received data,

12

taking whatever action is necessary.

The £d parameter passes the integer file descriptor value for the network socket for which
MDP is requesting monitoring to the SocketInstallCallback. Example uses of the file
descriptor include adding the file descriptor to a file descriptor set (FD_SET) for use with the
select() call. Other application synchronous input/output (I/O) notification mechanisms can
make similar use of socket file descriptors.

The value passed in the socketData parameter is for internal use by the MDP protocol
engine. When the application’s synchronous I/O notification mechanism detects that there is
received data ready to be read on one of the MDP-installed socket file descriptors, it should
call the MdpReadSocket () API function passing the corresponding value of the
socketData. Note that each socket opened by MDP will use its own unique value of
socketData so it is important that an application opening multiple MdpSessions (which will in
turn open multiple sockets) maintain the relationship between a given socket file descriptor
and the corresponding MDP-provided socketData value.

The userData parameter passes the a pointer to the stored value the application specified as
user data in its initialization call to MdpSetSocketInstallCallback(). Note that since a pointer
to this value is provided, the application may currently change this value. An example use of
userData is for the application to store a pointer to state that it needs in order to properly
install and maintain system timer resources.

IMPORTANT NOTE: It is recommended that new applications built with the MDP API are
structured so as to not change the value of the userData originally provided by the
application. For code safety reasons, it is highly likely that future versions of this callback
will provide the userData value directly and the application will be unable to change it other
than through a call to MdpSetSocketInstallCallback(). (Moral of the story: Providing pointers
to the guts of the protocol engine was a bad idea.)

The application-provided SocketInstallCallback should return a value of frue upon success and
a value of false upon failure.

Function M dpReadSocket()

SYNOPSIS
#include <mdpApi.h>

void MdpReadSocket (void* socketData) ;

DESCRIPTION

The MdpReadSocket() function is used by the application to notify MDP of received data
ready to be read on a socket which MDP has previously opened and, through a call to the
application’s SocketInstallCallback, installed for input notification. The socketData value
passed to the MdpReadSocket() function must equal the value passed to the application

13

when the corresponding socket was “installed”. A call to MdpReadSocket() causes the
MDP protocol engine to read the received message from the socket and process it, taking
whatever action is appropriate. These actions include sending data in response, installing
timeouts, and notifying the application (via the MdpNotifyCallback) of important protocol
events or errors.

RETURN VALUES

The MdpReadSocket() returns no value.

Function MdpSetNotifyCallback ()

SYNOPSIS
#include <mdpApi.h>

void MdpSetNotifyCallback (
MdpNotifyCallback* notifyFunc,
void* userData) ;

DESCRIPTION

This function allows the application to install a MdpNotifyCallback function which will be
called when the MDP protocol engine needs to inform the application of important protocol
events or errors. The MdpNotifyCallback (described in detail elsewhere) is used by MDPv2
to "notify” the host application of protocol events such as updated MdpSession or MdpObject
(transmit or receive) status. This allows the host application to update user interface displays
as needed, kick off post-processing of received data, be prompted for additional data to
transmit, and be notified of errors.

The notifyFunc parameter is a function pointer to an application-provided
MdpNotifyCallback function.

The userData parameter is an application—provided value which is stored by MDP and
later passed back to the application when the MdpNotifyCallback function is called. This
parameter allows the user to retrieve information necessary to perform whatever actions the
application requires upon notification of significant MDP protocol events.

RETURN VALUES

MdpSetNotifyCallback () returns no values.

MdpNotifyCallback Description

The MDP protocol engine calls the application-provided MdpNotifyCallback function when
different important protocol events or errors occur. This allows the user to take different
actions such as to allow the application to process a received file or data object, enqueue
additional file or data objects for transmission, receive notification of transmit or receive
progress, get updated status on other nodes within the MDP multicast session, etc. The

14

MdpNotifyCallback function is described with the following prototype:
typedef bool (MdpNotifyCallback) (

MdpNotifyCode notifyCode,
MdpSessionHandle sessionHandle,
MdpNodeId nodeId,
MdpObjectHandle objectHandle,
MdpError errorCode,
void* userData) ;

The notifyCode parameter indicates the nature of the MDP protocol event which has

occurred. There are a number of possible events which cause the MdpNotifyCallback to be
invoked. Possible values of the notifyCode include:

MDP_NOTIFY ERROR,
MDP_NOTIFY TX OBJECT START,
MDP_NOTIFY TX OBJECT FIRST PASS,
MDP_NOTIFY TX OBJECT ACK COMPLETE,
MDP_NOTIFY TX OBJECT FINISHED,
MDP_NOTIFY TX QUEUE_EMPTY,
MDP_NOTIFY SERVER_CLOSED,
MDP_NOTIFY RX OBJECT START,
MDP_NOTIFY RX_OBJECT UPDATE,
MDP_NOTIFY RX_ OBJECT COMPLETE,
MDP_NOTIFY REMOTE_SERVER INACTIVE,
MDP_NOTIFY OBJECT DELETE.

Each of these possible MdpNotifyCallback events will be described in detail below.

The sessionHandle parameter identifies the MdpSession for which the event is applicable.
This is significant for applications which may manage multiple MdpSessions. This
sessionHandle parameter can be used in other MDP API calls to manipulate the state of the
corresponding MdpSession.

The nodeId parameter identifies the MdpNodeld to which the notification is applicable. If
the notification is with regards to an MdpObject being received, the nodeId identifies the
source of the MdpObject. When the MdpObject is an object being transmitted, the value of
nodeId will be MDP_NULL_NODE. Also, the nodeId will be a value of
MDP_NULL_NODE for notifications not directly related to remote MdpServer status changes
or MdpObject reception.

The objectHandle parameter indicates the transmit or receive file or data MdpObject for
which the notification event is applicable. It is important to note that the value of the
objectHandle parameter provided here is only valid during execution of the
MdpNotifyCallback and the value should not be saved for future reference outside the specific
instance of the current MdpNotifyCallback function call. MdpObjectHandles apply only to the
identification of data or file objects during the course of their transport by the MDP protocol.
However, note that MdpObjectHandle values returned with a call to
MdpSessionQueueTxFile () or MdpSessionQueueTxData () are valid until the
receipt of a MDP_NOTIFY TX OBJECT FINISHED notification event (or a fatal error

15

event) for that MdpObject. Specific examples of the use of the objectHandle parameter will
be provided in the description of the individual MdpNotifyCallback event types.

The errorCode parameter is used to provide an indication of the error type when the
notifyCode value is equal to MDP_ NOTIFY ERROR. As in other events the sessionHandle
and objectHandle parameters will provide additional information as appropriate to the
errorCode type. Possible values for the errorCode currently include:

MDP_ERROR FILE_OPEN

This indicates that the MDP protocol engine was unable to open a file for transmission
(or possibly reception).

MDP_ERROR FILE EMPTY
This indicates that a file enqueued for transmission had zero contents.

MDP_ ERROR_FILE LOCKED
This indicates that file could not be opened because it was locked.

MDP_ ERROR
This generic error condition occurs when an MdpDataObject enqueued for transmission
has a NULL data pointer value.

MDP_ERROR MEMORY
This indicates MDP was unable to allocate memory for maintaining state on a transmit
or receive object.

The userData parameter contains the value the application specified when installing the
MdpNotifyCallback with the MdpSetNotifyCallback () function. This userData
value is for the application’s private use. For example, a pointer value might be stored so the
application can retrieve context information when the MdpNotifyCallback is called.

MdpNotifyCallback Guidelines (Rules of I mplementation)

IMPORTANT NOTE: The user’s MDPv2 application should not spend much time in the
MdpNotifyCallback function since it blocks the thread of execution of the MDPv2 protocol.
The user of this API should consider burying the MDPv2 protocol engine in a separate thread
or process if needed. Also note that the application-installed Notification Callback may be re-
entrantly called from the result of other MDP API calls made within the Notification Callback
routine.

A better long term approach will be to embed MDPv2 protocol operation in its own thread
and provide an API using an inter-thread (or inter-process) communications model. But
meanwhile, to simplify cross-platform portability (and until we think of a better approach)
we'll allow developers using MDPv2 for applications (or simulations) to do that however they
like. These callback mechanisms can currently be “buried” by developers however they see
fit for the platforms for which they are concerned.

16

(This section is unfinished - RBA)
MdpNotifyCallback Notification Events

This section describes each of the different types of MdpNotifyCallback events. Each event is
associated with a specific notifyCode value.

MDP_NOTIFY_ERROR
This notification event occurs when the MDP protocol engine encounters an error during the
process of transmitting or receiving files and/or data. In the current implementation of the
MDP API, there are only a few error events which result in this notification event. These
primarily include indications when MDP is unable to open a file to read for transmission, an
opened transmit file is found to have no content, or an MdpDataObject was enqueued for
transmission with an invalid (NULL) pointer. Additionally, an errorCode equal to
MDP_ERROR_MEMORY might be indicated when MDP is unable to allocate sufficient
memory to maintain state on new transmit or receive objects. Currently, the application needs
to take no action upon receipt of these notifications other than if the application wishes to
provide logging of these events. In the future, the API error notification procedure may be
further refined and additional error conditions added.

MDP_NOTIFY_TX_OBJECT_START
This notification event occurs when a file or data object which has previously been enqueued
for transmission by the application (See the descriptions of MdpSessionQueueTxFile ()
or MdpSessionQueueTxData ()) begins to be transmitted by the MDP protocol engine.
Since the application is allowed to enqueue multiple objects for transmission and MDP’s
transmission rate is governed, this provides an indication to the application when an object’s
actual transport begins. The sessionHandle and objectHandle parameters identify the
MdpSession and MdpObject for which the notification is relevant. Note that the
sessionHandle and objectHandle values will be the same as those returned in the
application’s previous respective calls to MdpNewSession () and
MdpSessionQueueTxFile () or MdpSessionQueueTxDatal().

MDP_NOTIFY_TX_OBJECT_FIRST_PASS
This notification event occurs after MDP has completed a “first pass” transmission of an
entire MdpObject. This does not occur until all data (including an “auto parity” has been
transmitted. This is intended primarily for use in applications where only silent clients (all
clients are silent (“EMCON”) with no repair requests) are present. Since no clients will be
requesting repair transmissions, it is not necessary for the MdpServer to maintain state for the
transmitted MdpObject. Thus any resources used by that MdpObject can be freed after this
notification occurs. Note that additional strategies can be implemented around this
notification (e.g. the application may maintain a timeout to limit the amount of time that
repairs are available for a transmitted object) or this notification may be useful in updating
graphical user interfaces in applicable applications.

MDP_NOTIFY_TX_OBJECT_ACK_COMPLETE
The MdpNotifyCallback is called with this notification code when the server has completed
the positive acknowledgement process for a given object. If no clients are providing positive

17

acknowledgement, this notification will occur immediately after the initial transmission of the
indicated object. Otherwise, this notification occurs after the server has completed the
positive acknowledgement cycle for an enqueued transmit object. This can mean either that
the positive acknowledgement cycle fully succeeded, or that it timed out for one, some or all
clients providing positive acknowledgement. The MDP API will be expanded in the future to
allow the application to determine the positive acknowledgement status of individual clients.

MDP_NOTIFY_TX_OBJECT_FINISHED
This notification event occurs when the MDP server is completely finished with an object the
application has previously enqueued for transmission. At this time, the client may wish to
free resources associated with that object (e.g. close and/or delete an associated file or free
associated memory). The “transmit cache depth” with which MDP has been configured
determines how long MDP will keep state on transmit objects before
MDP_NOTIFIY TX OBJECT FINISHED events occur. If a limited number of objects are
enqueued for transmission, the MDP protocol engine will indefinitely keep state for the last
objects queued within the constraints of the “transmit cache depth”. Note the application may
prematurely de-queue (or abort) transmit objects with a call to the
MdpSessionRemoveTxObject () API function. However, note that it is not safe to call
this function from within the MdpNotifyCallback. Transmit objects may be safely removed at
any other time. When the MDP NOTIFIY TX OBJECT FINISHED notification event
occurs, the indicated object will be automatically de-queued and the application should not
attempt to refer to that object after this notification event has occurred. Note that the
MDP_NOTIFY OBJECT DELETE notification will also occur after this
MDP NOTIFY TX OBJECT FINISHED notification.

MDP_NOTIFY_TX_QUEUE_EMPTY
This notification event occurs once each time the MDP protocol engine determines it has no
more objects pending transmission. The application can use this opportunity to enqueue
additional objects for transmission. Otherwise, the application will need to provide its own
mechanism for adding additional objects to the MdpSession transmit queue as needed. This
notification is useful to allow the MDP protocol engine, which is transmitting data at a
controlled rate, to control the flow of queuing objects for transmission.

MDP_NOTIFY_SERVER_CLOSED
This notification event occurs when local server operation has fully terminated after the
application has initiated a “soft” close of MdpServer operation. The expected procedure is
that the application will initate server shutdown with the MdpSessionCloseServer() API
function (with appropriate arguments). After this notification, is received, the application can
free up state the MDP library has kept for the corresponding MdpSession with confidence that
the protocol has robustly notified receivers of its intention to terminate server operation.

MDP_NOTIFY_RX_OBJECT_START
This notification event occurs when a new object is received at an MDP client node. This is
useful for updating user interface displays or for the application to log information on receive
status.

Additionally, in the case of MdpDataObjects, it is at this time that the application needs to
provide memory space for the MDP protocol engine to store the received data. The amount

18

of memory required to store the new receive object can be obtained with a call to the
MdpObjectGetSize () API function. If the application does not provide the memory
space for the object (with a call to MdpObjectSetData ()), the object will not be received.

MDP_NOTIFY_RX_OBJECT_INFO
This notification event occurs when the MDP_INFO message associated with the indicated
MdpObject is received. As described elsewhere, the MDP_INFO message can be used to
provide a small amount (less than or equal to the MDP server segment_size for the
MdpSession) timely context information for each object transmitted by an MDP server. Note
that the use of the MDP_INFO feature is optional so different applications may or may not
choose to utilize this protocol feature. The MDP_INFO received can be retrieved with a call
to the MdpObjectGetInfo () API function.

MDP_NOTIFY_RX_OBJECT_UPDATE
This notification event occurs whenever new data content is received for an MdpObject. This
allows the application to monitor the receive progress of individual objects. The
MdpObjectGetRecvBytes () API function can be used by the application to get an
indication of what portion of the object has been received up to that point in time.

MDP_NOTIFY_RX_OBJECT_COMPLETE
This notification event occurs when a object transmitted from a remote MDP server has been
completely received at the local node. This includes the optional MDP_INFO, if it is
available for the indicated object. At this point in t time, the application may wish to process
the received object since it has been received in its entirety and/or potentially free resources
the application has allocated for that object. Note that the MDP_ NOTIFY OBJECT DELETE
notification will also occur after this MDP_ NOTIFY RX OBJECT_ COMPLETE notification.

MDP_NOTIFY_REMOTE_SERVER_INACTIVE
This notification event occurs when an individual remote server MdpNode has been timed out
and determined to be inactive (I.e. no messages at all have been received from that server in
some sufficiently long period of time). The value of this inactivity timeout is
(2.0*ROBUST_FACTOR*GRTT) seconds. The default ROBUST_FACTOR is 20 (the API
contains a call to override this default) and the GRTT is the current estimate of group round
trip time advertised by the server in question. The application may use this notification as a
cue to make API calls which release resources (memory) used to maintain buffering and state
for the indicated MdpServer node. The applicable API calls include
MdpSessionDeactivateNode() which only frees buffering resources (the most significant
quantity of memory resources for servers) and MdpSessionDeleteNode() which frees all
resources and state associated with a remote server MdpNode. Note that in the current MDP
implementation (version 1.7a9), the state for a remote MdpServer is dropped when it goes
inactive AND there are no pending receive objects requiring repair (This responsibility will
be placed in the application’s domain in a future release).

MDP_NOTIFY_OBJECT_DELETE
This notification event occurs when the MDP protocol engine is “deleting” state for objects
which have either fully completed the reception or transmission process or have failed. This
notification allows the application to reclaim or free any resources (e.g. memory) which have
been allocated for the indicated object. Note that if the indicated object has not been

19

previously been associated with an MDP_TX_OBJECT_FINISHED or
MDP_RX_OBIJECT_COMPLETE notification event, it is possible the transmission/reception
of the object has failed for some reason. Note that this can occur if the application
prematurely de-queues a transmit object or “closes” an MdpSession (as client, server, or both)
while objects are pending reception or transmission.

4.0 MDP API Variable Types

A number of different variable types and constants are defined for use with the MDP API
function calls. The constants should be referred to by name as the actual values may change
(usually for good reason) in future versions of the SDK.

4.1 MDP API Variable Type Definitions

The following variable types are defined for use with the MDP API function calls. These
types are defined in the “mdpApi.h” header file.

MdpSessionHandle

Values of type MdpSessionHandle are used to uniquely identify a specific MdpSession which
has been created. MdpSessions are associated with a specific destination IP address and port
number. There are a number of protocol parameters associated with an individual MdpSession
and the API provides functions to set these parameters. The MdpSessionHandle is used as an
argument to these API functions to identify the MdpSession to which the functions are
applied. A value of MDP_NULL_SESSION indicates an invalid (nonexistent)
MdpSessionHandle.

MdpNodel d

Values of type MdpNodeld are used within the MDP API to uniquely identify nodes
participating within a given MdpSession. In general, all nodes participating within an
MdpSession should use unique MdpNodeld. The default behavior of the MDP protocol
engine is to automatically assign the local MdpNodeld based on the host platform’s default IP
address. A value of MDP_NULL_NODE indicates an invalid (nonexistent)
MdpSessionHandle.

MdpObjectHandle

Values of type MdpObjectHandle are used to uniquely identify a specific MdpObject which is
currently being transported (transmitted or received) by the MDP protocol engine. These
values. A value of MDP_NULL_OBIECT indicates an invalid (nonexistent)
MdpSessionHandle.

MdpObjectTransportld
Values of type MdpObjectTransportld are used to identify the 32-bit number which uniquely
identifies an object associated with a server during transport (I.e. active transmission). It is

very important to note that these numbers are valid only during actual transport with respect
to a specific server node. In MDP, an object being actively transported within the context of

20

an MdpSession is uniquely identified among the session participants by concatenating the
server’s (object source) MdpNodeld and the object’s MdpObjectTransportld. Within the MDP
API, the intended use of the MdpObjectTransportld is for function calls which allow an
application to establish sessions with alternative emission-controlled (EMCON) clients (silent
client nodes) message transmission modes of operation. At the time of this writing, these API
calls are not fully defined or documented. More information on this feature will be provided
in a future iteration of this document.

MdpObjectType

Values of type MdpObjectType are used to identify the type of object being transported. The
type information is generally used by the application at the receiver to provide proper
handling of notification events related to a specific object. The application may wish to
process files differently than received data or applications may restrict the type of objects they
support. (E.g. the example “tkMdp” application is intended for file transfer/broadcast and only
supports reception of objects of type MDP_OBJECT_FILE). The types of objects currently
supported in MDP are MDP_OBJECT_FILE and MDP_OBJECT_DATA.

The type MDP_OBJECT_FILE is used for transmission of storage device based files where
MDP servers can use the large capacity of the storage device as extended buffering for repair
retransmissions. The MDP protocol engine currently handles transmit/receive file IO directly
for files. This is primarily because the API is currently designed for the protocol running in
an “application space” environment (as opposed to within an operating system’s “kernel
space”) and this allowed for efficient operation. In the future, it is possible that the MDP API
may be more generalized and that application’s will be responsible for their own file-specific
I/O and MDP will provide programming interfaces in a manner more analogous to that of a
TCP socket.

The type MDP_OBJECT_DATA is used for “static” memory-resident objects. The API
allows MDP applications (via pointers) to indicate blocks of memory for server transmission
and client reception. The MDP protocol engine directly reads from and writes to the indicated
blocks of memory which allows for selective repair across potentially large blocks of memory.
This allows applications to transfer memory resident data with relatively little participation by
the application outside of the MDP protocol. However, as with file I/O, it is possible that this
API model may change in the future if the MDP protocol engine is embedded within an
operating system kernel or in a separate thread or process. These application programming
issues for reliable multicast are under continued investigation.

4.2 MDP Defaults and Constants

The following constants are defined for use in the MDP APIL. In some cases, these constants
are default parameter values provided for information purposes.

(1) MDP_SESSION_NAME_MAX: Maximum string length for an
MdpSession name.
2) MDP_NODE_NAME_MAX Maximum string length for an

MdpNode name.

21

(3) MDP_DEFAULT_TTL Default multicast TTL value.

4) MDP_DEFAULT_TX_RATE Default transmit rate (bits/sec)

(5) MDP_DEFAULT_SEGMENT_SIZE Default MDP payload size (bytes)

(6) MDP_DEFAULT_BLOCK_SIZE Default data packets per FEC
coding block.

(7) MDP_DEFAULT_NPARITY Default parity packets per FEC
coding block

(80 MDP_DEFAULT_BUFFER_SIZE Default receiver buffer size (in

bytes) per server.

9 MDP_DEFAULT_TX_CACHE_COUNT_MIN Default minimum object count kept
in server repair queue.

(10) MDP_DEFAULT_TX_CACHE_COUNT_MAX Default maximum object count kept
in server repair queue.

(11) MDP_DEFAULT_TX_CACHE_SIZE_MAX Default maximum object content (in
bytes) kept in server repair queue.

50 MdpSession Management Functions

TThe MDP API allows multiple MdpSessions to be created and opened to operate as server
(sender) and/or client (receiver) participants. The general use of the API calls listed in this
section (after the API has been properly initialized and appropriate callback functions installed
as previously described) is to create one or more instances of an MdpSession (referenced by a
variable of type MdpSessionHandle) and then open the session for protocol operation as a
client and/or server node as required by the application.

5.1 MdpSession Creation and Destruction

MdpSession instances must be created before any protocol operation begins. Each
MdpSession instance defines a specific destination address (including IP address and host port
number) to which the local MdpNode will communicate.

Function MdpNewSession()

SYNOPSIS
#include <mdpApi.h>

MdpSessionHandle MdpNewSession (

MdpInstance# instance,

const char* address,

unsigned short port,

unsigned char ttl = MDP_DEFAULT TTL,
MdpError error = NULL) ;

DESCRIPTION

The MdpNewSession () function is used by the application to create a new MdpSession
instance. Memory is allocated to maintain state for the session and default values are
established for MdpSession parameters where applicable. A number of parameters for an
MdpSession can be manipulated with function calls described below. The newly created
MdpSession will not be active (no packets are sent or processed) until the MdpSession is

22

opened as a server and/or client participant through use of the MdpSessionOpenServer ()
or MdpSessionOpenClient () functions respectively.

The instance parameter must be value obtained by the application from a previous call to
Mdplnit(). The address parameter must be a pointer to a string containing a valid dotted-
decimal IP address or resolvable host name. The port parameter is a valid system UDP port
number to use for the session. The ttl (time-to-live) parameter is the network hop count
which will scope (limit) the propagation of IP multicast packets sent. The optional exrror

parameter allows the application to retrieve any error indication which occurs upon failure of
this API call.

RETURN VALUES

An MdpSessionHandle value is returned for future use with other API calls to control the
operation of the corresponding MdpSession. A value of MDP_ NULL SESSION is returned
upon error and, if the application provided a pointer for the error parameter, an error
indication will be passed here.

Function MdpDeleteSession()

SYNOPSIS

#include <mdpApi.h>

void MdpDeleteSession (MdpInstanceHandle instance,
MdpSessionHandle sessionHandle)

DESCRIPTION

This function is the complement of the MdpNewSession () function. Call this function to
delete state for an existing MdpSession as identified by the sessionHandle parameter.
The session will be closed and state for all pending objects will be deleted as the session
shuts down. The instance parameter must be an appropriate value obtained from a
previous call to MdpInit () and the sessionHandle must be a value returned from a a
previous call to MdpNewSession () for the same given instance.

RETURN VALUES

The MdpDeleteSession () function returns no values..

5.2 MdpSession General Control

While a single MdpSession can play a role as a server (source) and/or a client (receiver), there
are some parameters of operation which apply to the MdpNode independently to its mode(s)
of participation within an MdpSession. For example, the data transmission rate of an
MdpNode within an MdpSession will not exceed application-controlled limits regardless of its
operation as a server and/or client. This section describes function calls which generally
apply to an MdpSession (referenced by an MdpSessionHandle within the API).

23

Table Z - Summary of MdpSession General Parameter Control Functions

MdpSessionSetTxRate () Controls peak transmission rate for
the specific MdpSession.
MdpSessionSetStatusReporting () Enables/Disables transmission of
periodic statuy stetistic reports.
MdpSessionSetTOS () Sets value for IP TOS field for
transmitted packets.
MdpSessionSetMulticast- Determines which network interface
Interfacenddress () will be used for multicast packet
transmission/ reception.
MdpSessionSetMulticastLoopback () Enables/disables loopback of

multicast packets for session.

MdpSessionSetRobustFactor () Set the “robustness’ (number of
repeat attempts) MDP uses in
transmission of MDP_CMD_FLUSH
messages and requests for positive
acknowledgement.

Function MdpSessionSetTxRate()

SYNOPSIS

#include <mdpApi.h>

MdpError MdpSessionSetTxRate (MdpSessionHandle sessionHandle,
double txRate) ;

DESCRIPTION

The MdpSessionSetTxRate () function sets the maximum transmission rate in bits per
second (bps) for the identified MDP session. This sessionHandle parameter identifies a
valid MdpSession previously created with a call to MdpNewSession() and the txRate
parameter establishes the transmission rate for that session. This function may be called at
any time. Note that in cases where the previous transmission rate was very low, there might
be a noticeable delay before transmission at the new data rate begins. When MDP’s
congestion control algorithm is operating (see MdpSessionSetCongestionControl ()),
the rate automatically determined by the MDP protocol will change the rate if it is set by the
application.

RETURN VALUES
The MdpSessionSetTxRate () function will return a value of MDP_ERROR_NONE if

24

successful. The value MDP_ERROR_SESSION_INVALID is returned upon failure.

Function M dpSessionSetStatusReporting()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetStatusReporting (
MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

The MdpSessionSetStatusReporting () function controls whether the local MdpNode
will send out regular status reports as it participates in an MdpSession. The status report
messages are special MDP protocol messages, which are periodically (once per 90 seconds)
sent out by enabled MdpNodes. The default behavior, if this function is not called, is that the
report messages are not sent. The primary purpose of these messages is to provide debugging
and performance status information. In some cases, these reports might be useful in
identifying multicast routing problems within a network. Currently, the content of reports
received are not available to the application via the API. This feature may be provided in the
future. The sessionHandle parameter identifies the MdpSession for which status reports
should be sent and the state parameter controls the status of reporting. When the state
parameter is set to a value of true, status reports are transmitted (after a 90 second interval)
and when it is set to false, no reports are sent.

RETURN VALUES

The MdpSessionSetStatusReporting () function will return a value of
MDP_ERROR_NONE if successful. The value MDP_ERROR_SESSION_INVALID is
returned upon failure.

Function MdpSessionSetTOS()

SYNOPSIS

#include <mdpApi.h>

bool MdpSessionSetTOS (MdpSessionHandle sessionHandle,
unsigned char theTOS) ;

DESCRIPTION

This function allows the application to set the value of the IP type-of-service (TOS) field for
any packets transmitted for the MdpSession indicated by the sessionHandle parameter.
The tos parameter corresponds to what the TOS byte in the IP header will be set for
transmitted packets. It should be noted that use of TOS is still considered experimental and
different networks and devices may treat traffic differently. Therefore, the following
discussion should be treated as a general guideline only.

25

The TOS byte in the IP header is divided into three sections: the PRECEDENCE field (the 3
high-order bits), the Type-of-Service (TOS) field (next 4 bits), and a reserved bit (the low
order bit). Any one or none of the TOS bits can be set t(5 different settings including the
default setting of 0000), while the PRECEDENCE bits can be set to 8 different values
including the default 000.

0 1 2 3 4 5 6 7
+----- +----- +----- +----- +----- +----- +----- +------ +
PRECEDENCE TOS MBZ
+----- +----- +----- +----- +----- +----- +----- +------ +

The table below gives examples of how the TOS field can be set to achieve different service.
The listed “shifted integer value” represent the corresponding value that should be used in the
call to MdpSessionSetTOS (). These values should be “OR’d” with the desired shifted
integer value for the PRECEDENCE field.

Table Q - TOS Field Values

Bit Pattern Definition Shifted integer Value
1000 IPTOS LOWDELAY 16
0100 IPTOS THROUGHPUT 8
0010 IPTOS RELIABILITY 4
0001 IPTOS_LOWCOST 2
0000 normal service 0

Table R - PRECEDENCE Field Values

Bit Pattern Definition Shifted Integer Value

111 IPTOS PREC_NETCONTROL 224
110 IPTOS PREC_INTERNETCONTROL 192
101 IPTOS_PREC_CRITIC_ECP 160
100 IPTOS PREC_FLASHOVERRIDE 128
011 IPTOS_PREC_FLASH 96
010 IPTOS PREC IMMEDIATE 64
001 IPTOS PREC _PRIORITY 32

000 IPTOS PREC_ROUTINE 0

26

Example:

If the value of tos parameter was set equal to 164, the PRECEDENCE would be
IPTOS_PREC_CRITIC_ECP, the TOS would be IPTOS _RELIABILITY and the IP TOS byte
would be set with the bit pattern: 10100100.

RETURN VALUES

A value of frue is returned if the system call to set the TOS field value is successful. Note
that if the MdpSession is not yet open when this call is made, this function will always return
true. However, if the set TOS is invalid, the subsequent call to open the session for client or
server operation will fail with an error. Some operating systems require super-user privileges
in order to set certain TOS values (e.g. IPTOS_PREC_NETCONTROL).

Function MdpSessionSetM ulticastl nterfaceAddress()

SYNOPSIS
#include <mdpApi.hs>

MdpError MdpSessionSetMulticastInterfaceAddress (
MdpSessionHandle sessionHandle,
const char* interfaceAddr) ;

DESCRIPTION

This function allows the application to select which network interface is used for multicast
transmission and reception for the multicast group possibly associated with a given
MdpSession. Internet Group Management Protocol (IGMP) messages for the group will use
the specified interface. This allows MDP operation to be properly supported on multi-homed
hosts. For hosts with a single network interface or configured to route multicast traffic on a
designated interface, use of this API function is not necessary. The sessionHandle
parameter identifies the applicable MdpSession and the interfaceAddr parameter is a
pointer to a fixed string containing an IP address in dotted notation (e.g. “132.250.95.8").

RETURN VALUES

The MdpSessionSetStatusReporting () function will return a value of

MDP_ERROR NONE if successful. The value MDP ERROR_SESSION_INVALID is returned
upon failure. While no specific errors are returned by this function, if the interface is
improperly specified, multicast operation may not occur on the expected network interface.

Function M dpSessionSetM ulticastL oopback()

SYNOPSIS
#include <mdpApi.hs>

MdpError MdpSessionSetMulticastLoopback (
MdpSessionHandle sessionHandle,

27

bool state) ;
DESCRIPTION

This function enables (state = frue) and disables (state = false) the loopback of multicast
packets transmitted for the session identified by the sessionHandle parameter. This
function is useful for debugging MDP applications (I.e. a single host can act as a client and
server to itself) or for applications where it is necessary that the client receive local server
transmissions.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned if successful. The value

MDP_ERROR_ SESSION_ INVALID if the indicated session is invalid. Note that on some
operating systems (e.g. Win32) it appears impossible to disable multicast loopback. Also note
that on some operating systems, loopback must be enabled for multiple processes to receive
multicast traffic from each other.

Function M dpSessionSetRobustFactor ()

SYNOPSIS
#include <mdpApi.hs>

MdpError MdpSessionSetRobustFactor (
MdpSessionHandle sessionHandle,
unsigned int value) ;

DESCRIPTION

This function controls the “robustness” with which certain MDP server commands are sent
and timeout behavior of MDP clients. The value parameter determines the number of
transmissions of MDP_CMD FLUSH messages which occur at the end of server transmission
and the number of attempts made to collect positive acknowledgement from ACKing clients.
Note that is very important to efficient protocol operation that all clients and servers operating
in the same MdpSession use the same “robustness”value. Since the MDP protocol does not
advertise server “robustness”, the application is responsible for assuring that all participated
MdpNodes are set to the same “robustness”value.

If the value is set to zero, no MDP_CMD_FLUSH messages will be sent at the endo of
server transmission, but at least one attempt to collect positive acknowledgement from all
ACKing receivers when positive acknowledgement is applicable. The default “robustness”
value used by MDP is 20. This value is estimated to provide greater than 90% reliability
even in cases of roughly 50% packet loss.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned if successful. The value
MDP_ERROR SESSION INVALID if the indicated session is invalid.

28

5.3 MdpSession Server Operation

As indicated previously, the MDP API provides functions to open (start) and close (stop) an
MdpSession for both server and client operation. Even for the same MdpSession within an
application, the “server” and the “client” operations are somewhat independent of each other.
This section describes function calls related to the MdpSession's operation as a server (source
of data transfers). For an application to participate as a server in a previously-created
MdpSession, it must make a call to MdpSessionOpenServer (). However, there a
number of APl calls controlling parameters applicable to server operation which may be
called before server operation is activated with a call to MdpSessionOpenServer ().
And there are some function calls which can be made only before server operation is started.
After a session has been opened for server operation, the application my enqueue file and/or
static data objects for transmission. Table X summarizes the API routines applicable to server
operation. Detailed descriptions of each of these functions is provided below.

Table X - Summary of MdpSession Server Management Functions

Server parameter control routines which can be called at any time:

MdpSessionSetCongestionControl () Turn MDP congestion control on/off.
MdpSessionSetAutoParity () Set amount of “auto parity”
transmitted per MDP FEC coding
block.
MdpSessionSetServerEmcon () Turn server EMCON mode on/off.
MdpSessionServerAddAckingClient () Add specific client host to positive

acknowledgement list.

MdpSessionServerRemoveAckingClient() Remove specific client host from
positive acknowledgement list.

MdpSessionSetTxCacheDepth () Set size of object history cache kept
for repair transmissions.

MdpSessionGetServerGrttEstimate () Gets the current estimate of group

greates roundtrip delay time
maintained by the server.

MdpSessionSetServerGrttEstimate () Sets current estimate of group

greatest roundtrip delay time
maintained by the server.

MdpSessionSetServerGrttMax () Set the maximum value the server
will use and advertise as its GRTT
estimate.

29

Table X - Summary of MdpSession Server Management Functions

MdpSessionSetGrttProbelnterval () Set the time interval ranges used by
the MDP server for GRTT probing.
MdpSessionSetGrttProbing() Enable/disable MDP GRTT probing.

Disabling alows complete manual
setting of server GRTT estimate.

Server parameter control routinesto be called only before starting server operation:

M dpSessi onSetBaseObjectTransportl d() Set initial transport object identifier
value.

Server start/stop control:
MdpSessionOpenServer () Start server operation.

MdpSessionCloseServer () Stop server operation.

30

Table X - Summary of MdpSession Server Management Functions

MdpSessionQueueTxFile ()

MdpSessionQueueTxData ()

MdpSessionRemoveTxObject ()

Server management routines for use only after server starl:

Enqueue file object for transmission
by the server.

Enqueue static data object for
transmission by the server.

Abort transmission of currently active
transmit object (or one being held for
potential repair transmissions)

Function M dpSessionOpenServer ()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionOpenServer (

MdpSessionHandle sessionHandle,

int segmentSize
int blockSize
int nparity
unsigned long bufferSize

DESCRIPTION

MDP DEFAULT SEGMENT SIZE,

MDP_DEFAULT BLOCK SIZE,
MDP_DEFAULT NPARITY,
MDP_DEFAULT BUFFER _SIZE) ;

The MdpSessionOpenServer () function opens a session for operation as a server
(sender) within an MdpSession. The sessionHandle identifies the MdpSession to be

opened for server operation. Default values are provided for the other parameters which can
be overridden at the application designer's discretion. These parameters include:

segmentSize Maximum payload size (in bytes) of MDP protocol messages. MDP
protocol messages are encapsulated within UDP/IP packets and some
messages contain as much as 725 bytes of MDP-specific overhead in
addition to the payload content. The “normal” amount of MDP overhead
in addition to the payload is 21 bytes. The segmentSize parameter
allows the application additional control for protocol efficiency so that
MDP operation can be properly matched to expected network conditions
and maximum transmission unit (MTU) sizes.

blockSize Number of “data’ payload packets per MDP forward error correction
(FEC) coding block. This must be a value from 1 to 255. The product

nparity Number of “parity” packets the server calculates and maintains for
potential repair transmission per MDP FEC coding block. Note that
these packets are smply calculated and not actually transmitted except in
response to repair requests by clients or to satisfy the current server “auto
parity” (discussed later) setting.

bufferSize Amount of memory the MDP protocol engine allocates as buffer space
for holding parity for repair transmissions to clients. A large
bufferSize setting allows an MDP server to operate most efficiently
in terms of processing demand. However, MDP will re-calculate parity
as needed for retransmission within the bounds of the transmission
“cache depth” set with the MdpSessionSetTxCacheDepth ()
function.
During the call to MdpSessionOpenServer (), the application-installed
TimerCallbackFunction will be called as timers critical to server operation are installed.
Immediately after opening an MdpSession for server operation (and after returning to your
application’s event loop), the MDP protocol engine will begin transmission of MDP protocol
messages appropriate to server operation. After the MdpSession is opened as a server, the
application may begin queuing objects for transmission with calls to
MdpSessionQueueTxFile () and MdpSessionQueueTxData ().

RETURN VALUES

On success, a value of MDP_ERROR_NONE is returned. Otherwise, an MDP error code
indicative of the problem opening server operation is returned.

Function MdpSessionCloseSer ver ()

SYNOPSIS
#include <mdpApi.h>

void MdpSessionCloseServer (
MdpSessionHandle sessionHandle,
bool hardShutdown = false) ;

DESCRIPTION

The function MdpSessionCloseServer () isused to close (stop) server operation for a
session which was previously opened. The sessionHandle parameter identifies the
session to close. Note that the same session may be re-opened with another call to
MdpSessionOpenServer (). However, any objects previously queued for transmission
are purged when server operation is closed. The hardShutdown parameter is used to
control the serv'er's behavior as it exits the MdpSession. By default (hardShutdown =
false), the server will “gracefully” exit the session by transmitting an MDP_CMD_FLUSH
message with the End-of-Transmission flag set. This notifies clients within the group that the
server is terminating operation and it will not process further repair requests for any pending
objects. An MDP_NOTIFY_SERVER_CLOSED natification occurs when this end-of-
transmission flushing is complete. The session should not be re-opened as a server until this

32

notification has occurred. The period of time for the graceful close process to complete is a
function of the server's current estimate of GRTT and the “robust factor” set for the session.
If the hardShutdown parameter is set to a value of true, the server immediately halts with
no notification to clients. In the future, a function to temporarily halt or pause server
operation might be provided.

RETURN VALUES
MdpSessionCloseServer () returns no vaue.
Function MdpSessionQueueT xFile&()

SYNOPSIS
#include <mdpApi.h>

MdpObjectHandle MdpSessionQueueTxFile (

MdpSessionHandle sessionHandle,
const char* path,
const char* name,
MdpError* error = NULL) ;

DESCRIPTION

The function MdpSessionQueueTxFile () is used to enqueue an MdpObject of type
MDP_OBJECT_FILE for transmission by the server. The current MDP protocol
implementation supported by this APl handles al file I/O directly. The sessionHandle
parameter identifies the MdpSession to which the file object is transmitted. The server
transmits the file from the local file system of the name corresponding to the concatenation of
the path and name text provided in this call. Additionaly, the name information is
transmitted as a single MDP_INFO packet with a name length limited to the segment size set
when the server was opened. The file data content is transmitted and repaired as
MDP_DATA. In the future, an option may be provided to suppress the transmission of
MDP_INFO for MDP_OBJECT_FILE objects or allow the application to override the
behavior of encapsulating the file name information (e..g using MDP_INFO content for
MIME-type information may be useful for some envisioned applications)

RETURN VALUES

If the file is successfully queued, the return value contains a unique MdpObjectHandle
which may be used to reference the object in other API calls. For example, if the application
needs to prematurely de-queue (abort) the file transmission before MDP is completely finished
with it, the MdpObjectHandle returned can be used with the
MdpSessionRemoveTxObject () function call. A value of MDP_NULL_OBIJECT is
returned if the attempt to queue the file for transmission fails. An MdpError value
indicating the reason for failure is returned in the memory space indicated by the application-
provided exror pointer parameter. Possible errors include:

MDP_ERROR_SESSION_INVALID sessionHandle refersto an non-existent
MdpSession

33

MDP_ERROR_MEMORY Unable to allocate sufficient memory to maintain
transmit MdpObject state.

MDP_ERROR_TX_QUEUE_FULL MdpSession transmit queue (cache) is full. See
MdpSessionSetTxCacheDepth () description

for information on controlling the transmit queue
depth.

MDP_ERROR_FILE_OPEN The file name specified by the path/name
parameters is not valid.

Function M dpSessionQueueT xDataObj ect()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionQueueTxDataObject (

MdpSessionHandle sessionHandle,
const char* infoPtr,

unsigned short infoSize,

const char* dataPtr,

unsigned long dataSize,

MdpError* error) ;

DESCRIPTION

The MdpSessionQueueTxData () function enqueues an MdpObject of type
MDP_OBJECT_ DATA for transmission in the MdpSession indicated by the sessionHandle
parameter. The data to be sent is a static (unchanging) block of data in the application’s
memory space or a short (single segment/packet) message as described below. The
sessionHandle referenced must correspond to an MdpSession which has previously been
successfully opened for operation as a server. The remaining parameters allow the application
to specify the content to be transmitted for enqueued MdpObject.

As described in the MDP protocol documentation, there are two possible components to
MdpObjects transmitted. These include optional, “out-of-band” information which must be
capable of being encapsulated in a payload size less than or equal to the segmentSize for
the transmitting MDP server (see MdpSessionOpenServer () for a description of the
segmentSize server parameter). This information is transmitted as a message of type
MDP_INFO within the MDP protocol. MDP_INFO packets (related to the fact that there is no
fragmentation of content) are repaired more rapidly by the protocol so some applications may
have use for this capability in their context of operation. Additionally, it may be useful for
applications to transmit data messages which are known to be one segmentSize in length
or smaller simply as MdpObjects with only MDP_INFO content (I.e. dataPtr = NULL).

34

This can speed up the transmission/repair process for small application messages. Note that
MDP_INFO message are not included in MDP’s FEC coding so MDP_INFO messages cannot
utilize the benefits of the autoParity option for server transmissions. The infoPtr
parameter points to an application memory location containing the data the application wishes
to be transmitted as MDP_INFO for the newly queued object and the infoSize indicates
the length of the info data. The infoSize parameter must be less than or equal to the
segmentSize specified in the previous call to MdpSessionOpenServer(). Note that the
underlying MDP protocol engine allocates storage for the indicate info data and copies the
data into the newly allocated storage. Therefore, the application may free or reuse the
memory referenced by the infoPtr without disrupting protocol operation after a call to this
function. (As described below, his is not the case for the data referenced by the dataPtr
parameter) No MDP_INFO message is sent for the transmit MdpObject if the infoPtr
parameter is equal to NULL.

The dataPtr parameter must point to a valid memory location that the application wishes
the MDP protocol to transmit as MDP static data content. The dataSize parameter
specifies the length of the data to be transmitted. IMPORTANT: The MDP protocol engine
may reference this data storage location for future repair transmissions so it is crtical that the
application not free or modify the memory indicated by the dataPtxr parameter until the
transmit MdpObject is removed from the transmission queue via a call to the
MdpSessionRemoveTxObject ()) API function, or a notification event of type
MDP_NOTIFY_TRANSMIT_OBJECT_FINISHED or MDP_NOTIFY_OBIJECT_DELETE is
received via the the application-installed MdpNotifyCallback.

RETURN VALUES

If the data object is successfully queued, the return value contains a unique
MdpObjectHandle which may be used to reference the object in other API calls. For
example, if the application needs to prematurely de-queue (abort) the data object transmission
before MDP is completely finished with it, the MdpObjectHandle returned can be used
with the MdpSessionRemoveTxObject () function call. A value of
MDP_NULL_OBJECT is returned if the attempt to queue the data for transmission fails. An
MdpError value indicating the reason for failure is returned in the memory space indicated
by the application-provided error pointer parameter. Possible errors include:

MDP_ERROR_SESSION_INVALID sessionHandle refersto an non-existent
MdpSession

MDP_ERROR_MEMORY Unable to allocate sufficient memory to maintain
transmit MdpObject state. This error code may also
occur if the infoSize parameter exceeds the
segmentSize specified for server transmissions.

35

MDP_ERROR_TX_QUEUE_FULL MdpSession transmit queue (cache) is full. See
MdpSessionSetTxCacheDepth () description
for information on controlling the transmit queue
depth.

Function M dpSessionRemoveT xObject()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionRemoveTxObject (
MdpSessionHandle sessionHandle,
MdpObjectHandle objectHandle) ;

DESCRIPTION

This function is used to remove (abort transmission of) MdpObjects which have been
previously queued for transmission from the MdpSession’s transmit queue. The
sessionHandle indicates the applicable MdpSession and the objectHandle parameter
specifies the object to be removed. Note that this function should not be called from with the
application installed MDP MdpNotifyCallback function when the notification event pertains to
the same object referenced by the objectHandle parameter.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR_SESSION_INVALID or MDP_ERROR_OBJECT_INVALID may be returned
upon error.

Function MdpSessionSetCongestionControl()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetCongestionControl (
MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function enables (and disables) the operation of an experimental congestion control
algorithm built into the MDP protocol. The goal of this congestion control algorithm is to
automatically control the transmission rate of an MDP server such that its transmissions
maximally utilize available network throughput while fairly sharing the capacity with other
MDP and TCP flows. This feature of MDP is still under development and is not yet
recommended for widespread use. The sessionHandle parameter specifies the applicable

MdpSession and the state parameter set to values of frue and false will enable and disable

36

congestion control operation, respectively. Congestion control operation is controlled by
individual server nodes. Client nodes will automatically appropriately respond to servers
running with congestion control enabled.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR_SESSION_ INVALID may be returned upon error.

Function M dpSessionSetAutoParity()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetAutoParity (
MdpSessionHandle sessionHandle,
unsigned char autoParity) ;

DESCRIPTION

This function controls how many FEC parity repair packets are automatically sent with each
MDP FEC coding block. The default is zero where parity repair packets are sent only on
demand in response to requests from clients. Setting some non-zero amount of “auto” parity
may yield performance benefits over long delay network connections where there is some a
priori known amount of expected packet loss. The sessionHandle parameter identifies
the applicable MdpSession and the autoParity parameter sets the number of automatic
repair packets. The value of the autoParity parameter must be less than or equal to the
nparity parameter set when the MdpSession was opened for server operation.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ ERROR_SESSION INVALID or MDP_ERROR PARAMETER INVALID may be
returned upon error.

Function M dpSessionSetServer Emcon()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetServerEmcon (
MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function enables (and disables) special protocol features to support emissions-controlled
(EMCON) transmissions by an MdpSession operating as a server. EMCON modes of

37

operation for MDP are under continued development so the specific protocol details relative to
EMCON operation are not yet finalized. However, at the current time, use of EMCON
operation causes a server to redundantly transmit objects’ MDP_INFO messages at the end of
each transmitted coding block in addition to sending MDP_INFO at the start of object
transmission. This is because MDP_INFO messages do not benefit from MDP’s FEC coding
structure. In general, MDP applications wishing to provide EMCON operation should not use
the optional MDP_INFO messages for object transmission in order to achieve the full gain of
MDP’s FEC coding. The sessionHandle parameter specifies the applicable MdpSession
and the state parameter set to values of true and false will enable and disable EMCON
operation, respectively.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR_SESSION INVALID may be returned upon error.

Function MdpSessionAddAckingClient()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionAddAckingClient (
MdpSessionHandle sessionHandle,
const char* host) ;

DESCRIPTION

This function adds a specific client (identified by its host name or IP address) to the list of
clients from which the server expects to receive positive receipt acknowledgement during
protocol operation. If MDP status reporting is used, it is important that the clients in this list
be appropriately configured for positive acknowledgement operation so that the clients’ status
reports do not cause them to be removed from the server’s positive acknowledgement list.
Controls over positive acknowledgement operation will be further refined in the future. The
sessionHandle parameter identifies the applicable MdpSession and the host parameter
points to a string containing the client’s resolvable host name or IP address in dotted notation
(e.g. “132.250.95.7").

IMPORTANT NOTE: Identifying clients by their host names or IP addresses will lead to
problems for MDP applications which use an alternate MdpNodeld convention. And, even if
IP addresses are user as MdpNodelds, multi-homed hosts can add to confusion here.
Therefore, in the future, this API call will be changed to use a type of MdpNodeld for the
second parameter to this function to be more consistent with the general utility of the MDP
API.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ ERROR_SESSION INVALID or MDP_ERROR DNS FAIL may be returned upon

38

error.

Function M dpSessionRemoveAckingClient()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionServerRemoveAckingClient (
MdpSessionHandle sessionHandle,
const char* host) ;

DESCRIPTION

This function removes a specific client (identified by its host name or IP address) from the list
of clients from which the server expects to receive positive receipt acknowledgement during
protocol operation. See the description of MdpSessionAddAckingClient () for more
information.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP ERROR SESSION INVALID may be returned upon error.

Function MdpSessionSetTxCacheDepth()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetTxCacheDepth (

MdpSessionHandle sessionHandle,
unsigned long minCount,
unsigned long maxCount,
unsigned long maxSize) ;

DESCRIPTION

This function sets the properties of the MdpSession's server transmit cache. The transmit
cache acts as a “hold queue’ for repairing previously-transmitted MdpObjects. Larger
transmit cache settings allow an MDP server to repair previously transmitted objects over a
longer time/bandwidth window. This is particularly important when using MDP as a purely
NACK-based protocol without any positive acknowledgements. The transmit cache does not
directly use much memory since MDP will pull information from the application's disk
storage or memory as needed to recover repair information. When new objects are queued for
transmission, MDP will remove state for old objects in the transmit cache as needed to make
room for state for the new objects. The following parameters govern the behavior of the
transmit cache:

minCount Smallest number of objects (files or data) for which state is kept (regardless of

39

the size of the individual objects.

maxCount Maximum number of objects (files or data) for which state is kept although the
maxCount may not be reached if the total size of the individual objects
exceed the maxSize parameter value.

maxSize Maximum total size (in bytes) of objects for which state is kept in the transmit
cache. However, the total size can exceed the maxSize parameter value if
there are minCount or less objects in the cache.

If minCount and maxCount are set to zero, state for the object will be deleted immediately
after its transmission and no repair transmissions will be sent in response to requests from
clients.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR_SESSION INVALID may be returned upon error.

Function MdpSessionServer SetGrttEstimate()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionServerSetGrttEstimate (
MdpSessionHandle sessionHandle,

double initialGrtt);
DESCRIPTION

This function sets the value of the estimate of group greatest roundtrip delay time (GRTT)
maintained by the server. As an integral part of the MDP protocol, MDP servers collect a
long term estimate of the worst case roundtrip packet transmission delay time among active
members in the MdpSession. This function allows an application to override the current
estimate at any time. If an application had a good a priori idea of expected GRTT at session
startup (obtained from previous runs as a server, or from side information), it could use this
function to initialize the server’s starting GRTT estimate to an appropriate value. The server
will then update this value with its own estimation and averaging process. The
sessionHandle parameter indicates the applicable MdpSession and the initialGrtt
parameter sets the server’s GRTT estimate in units of seconds. Also note that the GRTT
estimate maintained by an MDP server is currently limited to a range of MDP_GRTT MIN to
MDP GRTT MAX (currently 1 msec and 15 sec, respectively).

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR_SESSION INVALID may be returned upon error.

40

Function MdpSessionServer GetGrttEstimate()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetGrttEstimate (
MdpSessionHandle sessionHandle,

double* grttEstimate);
DESCRIPTION

This function returns the MDP server’s current estimate of GRTT for the MdpSession
indicated by the sessionHandle parameter. The estimate is returned (in units of seconds)
to the space pointed to by the grttEstimate parameter. Note that the estimate returned is
subject to the limits imposed by the MDP protocol engine and might not reflect actual GRTT
in extreme cases (See the description of the MdpSessionSetGrttMax () function).

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ ERROR_SESSION INVALID may be returned upon error. The MDP server’s current
estimate of GRTT is passed back via the grttEstimate pointer.

Function MdpSessionServer SetGrttMax()

SYNOPSIS
#include <mdpApi.h>
MdpError MdpSessionSetGrttEstimate (MdpSessionHandle sessionHan
dle,
double grttMax) ;
DESCRIPTION

This function sets the maximum value the server will use and advertise as its estimate of
group greatest roundtrip delay time (GRTT). The default value (I.e. don’t call this function) is
generally recommended as it represents a trade-off in the protocol’s ability to adapt to extreme
network conditions and maintain responsiveness. While the MDP protocol’s quantization and
encapsulation of advertised GRTT can support values up to 1000 seconds, the code currently
limits the maximum which can be set to 120 seconds. (The normal default maximum is 15
seconds).

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR SESSION INVALID may be returned upon error.

Function MdpSessionSetGrttProbel nterval()

41

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetGrttProbeInterval (MdpSessionHandle
sessionHandle,
double intervalMin,

double intervalMax) ;

DESCRIPTION

This function sets the time intervals (in seconds) the MDP server uses in its algorithm for
collecting an estimate of group greatest round trip time (GRTT) for the MdpSession indicated
by the sessionHandle parameter. The intervalMin parameter is the probing interval used
when MDP begins probing. Subsequently, the probe interval is exponentially increased (by
doubling) until the steady-state interval specified by intervalMax is reached. If the values
of intervalMin and intervalMax are equal, the probe interval is constant. The value
of intervalMin must be greater than or equal to 0.10 seconds and the value of
intervalMax must be greater than or equal to 5.0 seconds.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success or

MDP_ ERROR_ PARAMETER INVALID if the intervals are not in an acceptable range (or if
intervalMax is less than intervalMin). Otherwise a value of

MDP ERROR_SESSION INVALID may be returned upon error.

Function MdpSessionSetGrttProbing()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetGrttProbing (MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function enables or disables the MDP servers algorithm for collecting a GRTT estimate
from the group. The gessionHandle parameter is used to specify the applicable
MdpSession and the state parameter is set to a value of true or false to enable or
disable GRTT probing, respectively. Normally (and by default) GRTT probing should be
enabled for most efficient protocol operation. The ability to disable GRTT probing is only
provide for cases where network capacity is extremely limited (and a reasonable estimate of
actual GRTT is known a priori) or for cases when no clients are providing feedback (all
clients configured for EMCON operation).

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR SESSION_ INVALID may be returned upon error.

42

Function M dpSessionSetBaseObjectTransportld()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetBaseObjectTransportId /(
MdpSessionHandle sessionHandle,
MdpObjectTransportId baselId) ;

DESCRIPTION

This function sets the starting transport object identifier for the series of objects to be
transmitted by an MDP server. MDP servers transmit objects with monotonically increasing
transport object identifiers during the course of an MdpSession. MDP client nodes
“synchronize” to an MDP server based on the transport object identifier of the first received
message from the specific MDP server. This is part of what allows multicast receivers to
“come and go” as they please within the context of an MDP session. Because the clients use
these transport object identifiers to uniquely identify an object from a server, it is very
important that, when a server application is stopped and restarted, it begins the subsequent
transmission with a base object transport identifier sufficiently out-of-range of the identifier of
the last object transmitted. There are different methods applications may use to achieve this
goal. The “tkMdp” example application randomly selects a base object transport identifier at
startup. Because the probability of selecting a number too close in range (currently 256) of
the previous transport identifier is very low, this was deemed an acceptable method for the
demonstration application. More robust schemes where the application logs the most recent
object transport identifier in non-volatile storage (e.g. on a disk file) and then picks an
appropriate restart value after the server is exited (because of a system failure or other reason)
can also be implemented. The API function call MdpObjectGetTransportId () can be
used to retrieve the transport object identifier of a newly-queued transmit object to serve this
purpose. While the current object transport identifier range “window” over which a client
tracks synchronization with a given server is 256, this value may be controlled via the API in
the future. More information on the “synchronization window” will be provided then.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. Otherwise a value of
MDP_ERROR_SESSION INVALID may be returned upon error.

54 MdpSession Client Operation

This section describes functions related to the MDP protocol engine’s capabilities to
participate as a client within an MdpSession. The general order of operation is that an
application may open an MdpSession for client operation. At this point, the MDP protocol is
open to receiving transmissions from any server(s) transmitting to the MdpSession. The
MdpNotifyCallback installed by the application will be called as MdpObjects are received
from servers. Additional API calls to retrieve information about the MdpObjects being
received are described later. Currently, there are no controls within the MDP API to restrict

43

reception of any data or from any specifc server(s). In the near future, it is likely the API
will be expanded to allow MDP client applications to “pick and choose” which portions of
data transmitted to an MdpSession they wish to receive. Also, as a client receives
transmissions from a new server within the session, it allocates memory to buffer reliable
reception for each individual server. So while in principle an MdpSession may have an
arbitrary number of sources of data, the practical number of sources is limited by the clients’
ability to allocate buffer space for multiple sources. In the future, the API will be extended to
allow client applications to “timeout” or explicitly “close” specific sources (thus freeing
allocated memory resources) in addition to the receive data object filtering ability previously
described. This will allow applications to create more flexible paradigms to support “many-
to-many” communications. Meanwhile, the basic capabilities of the API allow an application
to participate as a receiver in an MdpSession with relatively simple code. The functions
related to participate as a client simply consist of functions to open (start) client participation,
and control a few parameters of client operation. After this, it is primarily the code within
the the MdpNotifyCallback which allows the application to receive transmissions from servers
and process the received objects properly. Table Y summarizes the functions specifically
related to controlling client operation.

Table Y - Summary of MdpSession Client Management Funcitons

Client parameter control routines which can be called at any time:

MdpSessionSetClientAcking () Causes client to set positive

acknowledgment indicator flag in
transmitted status reports.

MdpSessionSetClientUnicastNacks () Client-generated NACK messages

will be unicast routed to applicable
server instead of multicast to group
if set true.

MdpSessionSetClientNackingMode () Determines client nacking behavior
for newly-received or missing
objects in the series of object
transmission from servers.

MdpSessionSetClientStreamIntegrity () Determinesif client will NACK for
repair of MdpObjects in the series of
server transmissions for which the
client has received no content (info
or data) at all.

MdpSessionSetClientMulticastAcks () Client-generated ACK messages wil
be multicasted to group instead of
unicast routed to applicable server.

MdpSessionSetArchiveDirectory ()

MdpSessionSetArchiveMode ()

Table Y - Summary of MdpSession Client Management Funcitons

Specifies directory where client
stores received objects of type
MDP_OBJECT _FILE.

Specificies whether client should
permanently archive or temporarily
caches received file objects.
(Affects naming of received files
and overwrite policy).

MdpSessionSetClientEmcon ()

Client parameter control routines which should be called before client start:

Controls optional emission-
controlled (silent client) mode of
operation for client.

Client control

MdpSessionOpenClient ()

MdpSessionCloseClient ()

Start client operation.

Stop client operation.

MdpSessionAbortRxObject ()

Terminate reception of a specific
MdpObject.

MdpSessionGetNodeAddress ()

Get the current source IP address
and port number for a remote server
node in the MdpSession.

MdpSessionGetNodeGrttEstimate ()

Get the current GRTT estimate for a
remote server in the MdpSession.

MdpSessionGetNodeNextRxObject ()

Allows caller to retrieve the list of
pending receive MdpObjects being
received from a remote server.

MdpSessionDeactivateNode ()

Frees buffering resources allocated
for a remote server, dropping state
on pending receive MdpObjects.

MdpSessionDeleteNode ()

Drops all state and free all resources
for a remote server MdpNode.

Function M dpSessionOpenClient()

SYNOPSIS
#include <mdpApi.h>

45

MdpError MdpSessionOpenClient (
MdpSessionHandle sessionHandle,
unsigned long bufferSize =
MDP DEFAULT BUFFER _SIZE) ;

DESCRIPTION

The MdpSessionOpenClient () function opens a session for operation as a client
(receiver) within an MdpSession. The sessionHandle parameter specifies the applicable
session and the buf ferSize parameter indicates how much memory (in bytes) the client
should allocate for each server which is detected transmitting to the session. A default value
of approximately 1 Mbyte for the bufferSize parameter is provided. After the session is
opened for client operation, the client will begin waiting for transmissions from server nodes
within the MdpSession. The client will also generate MDP status reports once per 90 seconds
if it has been configured to do so.

RETURN VALUES

On success a value of MDP_ERROR_NONE. A value of
MDP_ERROR_SESSION_INVALID or MDP_ERROR_MEMORY will returned upon failure.

Function MdpSessionCloseClient()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionCloseClient (MdpSessionHandle sessionHandle) ;

DESCRIPTION

The MdpSessionCloseClient () function closes (stops) client operation for the
MdpSession identified by the sessionHandle parameter.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success.
MDP_ERROR_SESSION_INVALID is returned otherwise.

Function MdpSessionAbortRxObject()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionAbortRxObject (MdpSessionHandle sessionHandle,
MdpObjectHandle objectHandle) ;

DESCRIPTION

46

The MdpSessionAbortRxObject () terminates reception of an MdpObject being received
by a client. This function may be called at any time during the interval during which a given
MdpObjectHandle is valid (l.e. from the time of MDP_ NOTIFY RX OBJECT_START until
MDP_NOTIFY OBJECT DELETE). The sessionHandle and objectHandle
parameters indicate the applicable MdpSession and MdpObject, respectively. Note that even
though the application may abort reception of an object, if a subsequent positive
acknowledgement request for that object is sent by the server, the aborting receiver will
acknowledge (ACK) that reception was completed. The positive acknowledgement
mechanism in MDP is designed with respect to the successful transport of the object.
Application layer needs for positive acknowledgement need to be addressed separately by the
application.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success.
MDP_ERROR_SESSION_INVALID is returned if the sessionHandle isinvalid, or
MDP_ERROR_OBJECT INVALID isreturned if the objectHandle value is equa to
MDP NULL_OBJECT. Itis critica that only valid non-null MdpObjectHandl€'s are passed to
this function call.

Function MdpSessionGetNodeAddr ess()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionGetNodeAddress (

MdpSessionHandle sessionHandle,
MdpNodeId nodeId,
unsigned long* address,
unsigned short* port) ;

DESCRIPTION

This function retrieves the IP source address and port number for the MdpNode identified by
the nodeId parameter. The nodelId value may have been previously obtained with a call

to MdpObjectGetSourceNodeId (). The sessionHandle parameter identifies the
applicable MdpSession and the address and port parameters point to storage locations for
the respective retrieved values.

RETURN VALUES

This function will return a value of MDP_ ERROR_NONE if successful. A value of
MDP_ERROR_SESSION INVALID is returned upon failure.

Function MdpSessionGetNodeGrttEstimate()

a7

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionGetNodeGrttEstimate (

MdpSessionHandle sessionHandle,
MdpNodeId nodeId,
double=* grttEstimate) ;

DESCRIPTION

This function retrieves the current estimate of GRTT advertised by the remote server node
indicated by the nodeId parameter in the MdpSession identified by the sessionHandle
parameter. The estimate of GRTT is returned to the storage space indicated by the
grttEstimate pointer parameter in units of seconds. A valid MdpNodeld can be retrieved
using the MdpObjectGetSourceNodeId () function given a valid MdpObjectHandle for
a current object being received. The retrieved MdpNodeld is guaranteed to be valid only
during the period of time for which MdpObjectslds associated with the same source are valid.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success. If the nodeId parameter is not
valid, a value of MDP_ERROR_NODE_INVALID will be returned.

Function M dpSessionGetNodeNextRxObject()

SYNOPSIS
#include <mdpApi.h>

MdpObjectHandle MdpSessionGetNodeNextRxObject (

MdpSessionHandle sessionHandle,
MdpNodeId nodeId,

MdpObjectHandle* previousObject,
MdpError* error = NULL) ;

DESCRIPTION

This function allows the application to retrieve the list of pending receive objects for a
particular remote server MdpNode one at a time. The sessionHandle parameter identifies
the applicable MdpSession and the nodeId parameter identifies the remote server of interest.
The previousObject parameter is used to start the list iteration (using a value of
MDP_NULL_OBJECT) and to prompt the API for the next pending receive object using
previously returned values. Thus, this function can be used to iterated over the list of
pending receive MdpObjects.

RETURN VALUES
If the previousObject parameter is set to a value of MDP_NULL_OBJECT (or an

48

invalid MdpObjectHandle), the identifying handle of the first receive-pending MdpObject is
returned. If the previousObject parameter is a valid MdpObjectHandle, the handle of
the next following receive-pending MdpObject is returned. A value of MDP_NULL_OBJECT
may also be returned upon error. The storage identified by the error parameter will contain a
value indicating the error status of MDP_ERROR_NONE,
MDP_ERROR_SESSION_INVALID, or MDP_ERROR_NODE_INVALID.

Function M dpSessionDeactivateNode()

SYNOPSIS
#include <mdpApi.h>
MdpError MdpSessionDeactivateNode (

MdpSessionHandle sessionHandle,
MdpNodeId nodeId) ;

DESCRIPTION

This function releases buffering resources allocated for a remote server MdpNode, dropping
state on receive pending MdpObjects for that server, but maintains the server’s state with
regards to which MdpObjects have been received and other factors. The bulk of memory
resources used by the MDP library for client operation is for receive buffering. This function
allows the application to manage receive buffering memory resources in a timely manner.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success. A value of
MDP_ERROR_SESSION_INVALID or MDP_ERROR_NODE_INVALID may be returned if
inappropriate (e.g. MDP_NULL_SESSION) values are supplied.

Function MdpSessionDeleteNode()

SYNOPSIS
#include <mdpApi.hs>
MdpError MdpSessionDeleteNode (

MdpSessionHandle sessionHandle,
MdpNodeId nodeId) ;

DESCRIPTION

This function releases all memory resources and state allocated by a MDP client for a remote
server MdpNode. No state on the remote server is retained and when the client receive new
messages from that server, it will re-allocate state for the server and begin reception as if it
were a newly detected server.

RETURN VALUES

49

A value of MDP_ERROR_NONE is returned upon success. A value of
MDP_ERROR_SESSION_INVALID or MDP_ERROR_NODE_INVALID may be returned if
inappropriate (e.g. MDP_NULL_SESSION) values are supplied.

Function MdpSessionSetClientAcking()

SYNOPSIS
#include <mdpApi.h>
MdpError MdpSessionSetClientAcking (

MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

The MdpSessionSetClientAcking () function controls the client node’s willingness to
participate in positive acknowledgement of the receipt of MdpObjects transmitted by servers.
When MDP status reporting is used (see MdpSessionSetStatusReporting()), a flag
in the report indicates the client’s ACKing status. It is important to note that this flag must
be properly set when a server has included the client in question in its positive
acknowledgement list. Even though the client is in the list at startup, the client will be
removed from the list if the server receives a report from the client with its ACKing status
flag unset. Controls of the positive acknowledgement process will be further refined in the
future as the need for this functionality in different reliable multicast applications is better
defined. The sessionHandle parameter indicates the applicable MdpSession and the
state parameter set to a value of frue or false, enables or disables client ACKing,
respectively.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success.
MDP_ ERROR_SESSION INVALID is returned otherwise.

Function MdpSessionSetClientUnicastNacks()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetClientUnicastNacks (
MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function controls how MDP NACK messages are transmitted by a client. Normally, it is
anticipated that MDP NACK messages will be multicast to the session to promote NACK

50

suppression among MDP clients. However, in some asymmetric network topologies without
reciprocal multicast routing, it may be necessary for some clients to unicast NACK messages
directly to the server source address(es). The sessionHandle parameter indicates the
applicable MdpSession and the state parameter set to a value of frue causes the client to
unicast NACK messages to the server source address(es), while a value of false causes the
client to send NACK messages to the MdpSession destination address (which may be a
multicast or unicast address).

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success.
MDP_ ERROR_SESSION INVALID is returned otherwise.

Function MdpSessionSetClientNackingM ode()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetClientNackingMode (
MdpSessionHandle sessionHandle,
MdpNackingMode mode) ;

DESCRIPTION

This function controls the default client nacking behavior for the MdpSession indicated by the
sessionHandle parameter. The possible values for the mode parameter include
MDP_NACKING NORMAL, MDP NACKING INFOONLY, and MDP NACKING NONE. This
default behavior applies to newly-received objects and objects “missing” from the series of
server object transmissions. When the client's MdpNackingMode is set to
MDP_NACKING_NORMAL, the client will request repair retransmission of the entire
content of any missing or newly received MdpObjects as necessary. When the client
MdpNackingMode is set to MDP_NACKING_INFOONLY, the client will request
retransmission only for missing MdpObject info content, if applicable. And when the client
MdpNackingMode is set to MDP_NACKING_NONE, the client will not request any repair for
missing data (Note that the client may possibly still receive the object in question as a result
of other client's repair requests).

The MdpNackingMode may be set for individual MdpObjects (see the
MdpObjectSetNackingMode () function) to allow a client to selectively choose which
objects it wishes to reliably receive. For example, the info content of objects transmitted by
an MdpServer application may contain information the client application can use as criteria to
make a decision on whether to reliably receive (or receive at all) particular MdpObjects. The
MdpObject sender MdpNodeld could also be used as criteria. Other MDP API calls including
MdpObjectGetSourceNodeld(), MdpObjectSetNackingMode(), and
MdpSessionAbortRxObject() may be used in conjunction with this function to achieve desired
application behavior.

51

By default, MdpSessions will operate with a MdpNackingMode of
MDP_NACKING_NORMAL, unless this function is called. The client MdpNackingMode
may be changed at any time and will apply on future newly-received or entirely missing
objects. Parially-received MdpObjects will retain the MdpNackingMode behavior prior to the
call to MdpSessionSetClientNackingMode(). The application can manage the nacking
behavior of these receive pending objects separately with the MdpObjectSetNackingMode()
function.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success.
MDP_ ERROR_SESSION INVALID is returned otherwise.

Function MdpSessionSetClientStreamlntegrity()

SYNOPSIS
#include <mdpApi.h>
MdpError MdpSessionSetClientStreamIntegrity (

MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function controls the client’s behavior with regard to requesting repair for MdpObjects
“missing” in the sequential series of MdpObjects transmitted by MdpServer nodes. When the
value of state is true, the client will request retransmission of MdpObjects it detects
“missing” in the series of objects received. This behavior guarantees that every MdpObject
transmitted by an MdpServer will be received by the client. If the value of the state
parameter is false, “stream integrity” is disabled such that the client will only request repairs
for MdpObjects for which it has received at least some content (in the form of an
MDP_INFO, MDP_DATA, or MDP_ PARITY message). However, if the MdpServer
subsequently requests positive acknowledgement for a missing object, the client will not
acknowledge, even if “stream integrity” is disabled.

When client “stream integrity” is disabled, the probability of reception of MdpObjects of
small size becomes very dependent on the packet loss characteristics of the network. By
default, client “stream integrity” is enabled, and it is only recommended that it be disabled to
meet very special application requirements.

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success.
MDP_ERROR SESSION INVALID is returned otherwise.

52

Function MdpSessionSetClientMulticastAcks()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetMulticastAcks (
MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function controls how MDP ACK messages are transmitted by a client. Normally, ACK
messages are unicast directly to the server node(s) since there is currently no benefit to group-
wide reception of ACK messages. However, in cases where unicast routing is unavailable
(and we have a network like that!) or where, because of asymmetry, it is important that ACKs
are transmitted to the MdpSession destination address instead of the server source address(es),
this function can be used to achieve that capability. The sessionHandle parameter
indicates the applicable MdpSession and the state parameter set to a value of true causes
the client to send ACK messages to the MdpSession destination address (which may be a
multicast or unicast address), while a value of false causes the client to send NACK messages
to the server source address(es).

RETURN VALUES

A value of MDP_ERROR_NONE is returned upon success.
MDP_ERROR_ SESSION INVALID is returned otherwise.

Function MdpSessionSetAr chiveDirectory()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetArchiveDirectory (
MdpSessionHandle sessionHandle,
const char* path) ;

DESCRIPTION

This function sets the file name “path” to indicate the directory to which the MDP client
should store received MdpObjects of type MDP_OBJECT FILE. This “path” must be set for
an MDP client application to receive files. However, if the application is only handling
MdpObjects of type MDP_OBJECT_DATA, it is not necessary to set the archive directory
path. The sessionHandle parameter indicates the applicable MdpSession and the path
parameter is a pointer to a string (PATH MAX maximum length) containing the name of the
directory in which to store received files. The behavior of how received files are names

53

and/or overwritten is governed by the “archive mode” (see
MdpSessionSetArchiveMode ()).

Note: In the future, application-specific features such as file archiving/cacheing will be
removed from the MDP protocol engine core code base. As a transport protocol,
application-specific features such as this are better handled by applications and the MDP
protocol engine will provide more general handling of transport objects, likely requiring
applications to be responsible for file I/O. The current MDP code contains these functions as
a result of the history of its development.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. If the MDP protocol engine detects
it is unable to write to the indicated directory, an error code of MDP_ ERROR_FILE_ OPEN is
returned and MDP_ERROR_SESSION INVALID is returned if the sessionHandle is not
valid.

Function MdpSessionSetArchiveM ode()

SYNOPSIS
#include <mdpApi.h>

MdpError MdpSessionSetArchiveMode (
MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function is used to determine whether the MDP will treat received files as those to be
permanently stored or as files to be temporarily cached. The sessionHandle parameter
identifies the applicable MdpSession and a value of true enables file archiving while false
disables those features. When file archiving is enabled, two things happen:

1) If the file name in the MDP_INFO packet associated with the file contains directory
path delimiters, the directory structure will recreated within the local MDP archive
directory.

2) If a file with the same name is subsequently received, MDP will overwrite the first
file.

When file archiving is disabled (default), the corresponding change in behavior is such that:

1) If the file name in the MDP_INFO packet associated with the file contains directory
path delimiters, the file name is “flattened” by replacing the directory delimiters with
an underscore character (‘_’). Thus, files to be “cached” are all contained within the
single, flat archive directory.

2) When a file with a matching name is received, the new file is given a different name
(a concatenation of a temporary file name from the system and the files actual name,
so that the file’s extension is preserved).

54

See the “Note” under the description of MdpSessionSetArchiveDirectory ()
concerning the longevity of this type of functionality within the MDP transport protocol code
base.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success or
MDP_ERROR_SESSION INVALID is returned if the sessionHandle is not valid.

Function MdpSessionSetClientEmcon()

SYNOPSIS
#include <mdpApi.h>
MdpError MdpSessionSetClientEmcon (

MdpSessionHandle sessionHandle,
bool state) ;

DESCRIPTION

This function enables or disables an MDP client from operating in an EMCON (emissions-
controlled, or uni-directional server->client transmission) mode of operation. The
sessionHandle parameter identifies the applicable MdpSession and the gstate parameter
enables EMCON operation if set to a value of frue or disables it if set to a value of false.
When EMCON operation is enabled, the following changes in MDP client behavior occur:

1) The client will not make any packet transmissions. Thus in EMCON mode, the client
is entirely dependent upon robust transmissions by the server (through use of “auto
parity” or redundant object transmission) as the client is prevented from sending
NACK messages, ACK messages or any other kind of report. Therefore, servers
should be carefully configured when operating in MdpSessions where clients may be
operating in EMCON mode. Node that a mixture of clients operating with EMCON
operation enabled or disabled is acceptable.

2) The MDP client changes the way it manages memory for buffering received objects.
In normal (NACK-based) operation, an MDP client will buffer older received data in
favor of new data when buffer space is limited under the presumption that the server
will eventually respond to its NACK messages with repair (or send a SQUELCH
command if repair of the object in question is no longer supported). However, when
EMCON operation is enabled, the client buffers new data in favor of old data under
the presumption that the server will not be retransmitting the old object data (since the
client is unable to request repairs).

These capabilities allow for rudimentary support of EMCON operation among MDP servers
and clients within an MdpSession. As concepts of operation for EMCON mature, the API
and functionality in support of this capability will evolve.

RETURN VALUES

55

A value of MDP_ ERROR_NONE is returned upon success or
MDP_ERROR_SESSION INVALID is returned if the sessionHandle is not valid.

6.0 MdpObject Management Functions

This section describes functions related to controlling and retrieving information concerning
MdpObjects which are being transmitted or received. Most of these functions are most
applicable during the reception of MdpObjects and are intended for use within the
MdpNotifyCallback which the application installs for the MDP protocol engine. In general,
the state referenced by MdpObjectHandles within the API is only valid during the actual
transport of an MdpObject. For transmitted objects, this is from the time the object is queued
for transmission until the MDP_ NOTIFY TX OBJECT FINISHED (or

MDP_NOTIFY OBJECT DELETE) for the corresponding MdpObjectHandle notification
occurs. For received objects, the MdpObjectHandle is valid from the time the

MDP_RX OBJECT_ START notification occurs until the
MDP_NOTIFY RX OBJECT COMPLETE (or MDP_NOTIFY OBJECT DELETE) occurs.
Use of these MDP API calls at inappropriate times can lead to a system error.

Table Q - Summary of MdpObject Management Functions
General routines:

MdpObjectGetType() Retrieves MdpObject type
(MDP_DATA_OBIJECT or
MDP_FILE_OBIJECT)

MdpObjectGetInfo() Copies payload of MDP_INFO data
associated with a given object.

MdpObjectGetSize() Retrieves size of object in bytes.

MdpObjectGetRecvBytes() Retrieves number of bytes currently received

for a given object.

MdpObjectGetTransportld() Retrieves the 32-bit transport identifier for
an MdpObject.

MdpObjectGetSourceNodeld() Retrieves the MdpNodeld of the source of
an MdpObject being received.

MdpObjectSetNackingMode () Set the client nacking behavior for the
indicated MdpObject.

MDP_DATA_OBJECT routines:

56

Table Q - Summary of MdpObject Management Functions

MdpObjectSetData() Assigns a data buffer to be used for
reception of data content of an
MDP_DATA_OBIECT.

MdpObjectGetData() Retrieves pointer to the data content of an
MDP_DATA_OBIECT.

MDP_FILE_OBJECT routines:

MdpObjectGetFileName() Retrieves the full file name, including path,
of an MDP_FILE_OBIJECT.

Function MdpObjectGetType()

SYNOPSIS
#include <mdpApi.h>

MdpObjectType MdpObjectGetType (MdpObjectHandle objectHandle) ;

DESCRIPTION

This function returns the object type for MdpObject indicated by the objectHandle
parameter. The types currently supported include:

MDP_DATA_OBIJECT Static memory-resident block of data to be transported by the
MDP protocol.

MDP_FILE_OBJECT MdpOhbject representing a disk-based file to be transported by
the MDP protocol.
MDP_SIM_OBJECT Null object used for representation of transport objects of

different sizes for simulations conducted with the ns-2 or
OPNET network simulation models supported in the MDP code
base.

RETURN VALUES

The type of MdpObject is returned. If an invalid MdpObjectHandle is used, a system
error may occur. Thus, caution care must be taken to use this function at only the appropriate
time as described in the introduction to this section.

Function MdpObjectGetlnfo()

SYNOPSIS
#include <mdpApi.h>

57

bool MdpObjectGetInfo (MdpObjectHandle objectHandle,
char* buffer,
unsigned short* buflLen) ;

DESCRIPTION

This function copies the MDP_INFO (if available) associated with the MdpObject indicated
by the objectHandle into the buf fer provided by the caller. The value the bufLen
parameter points to should be preset to contain the amount of space available (in bytes) in
the buf fer when the function is called. Upon return, the bufLen parameter will be
adjusted to how many bytes were copied. Note: A function will be added to the API in the
future so that the application may determine how many bytes of MDP_INFO are available for
a given object.

RETURN VALUES

A value of frue is return if MDP_INFO is available for the object and was copied. A value
of false is returned if no MDP_INFO is available.

Function MdpObjectGetSize()

SYNOPSIS
#include <mdpApi.h>

unsigned long MdpObjectGetSize (MdpObjectHandle objectHandle) ;

DESCRIPTION

This function returns the total size (in bytes) of the data content of the MdpObject. 1dentified
by the objectHandle parameter.

RETURN VALUES

The total size of the MdpObject in bytes is returned. MdpObjects consisting of solely
MDP_INFO will return a data content of size zero.

Function MdpObjectGetRecvBytes()

SYNOPSIS
#include <mdpApi.h>

unsigned long MdpObjectGetSize (MdpObjectHandle objectHandle) ;

DESCRIPTION

This function returns the number of bytes of the data content currently received for the
MdpObject. 1dentified by the objectHandle parameter. This function can be used by an
application to monitor the reception progress of an object in transit. The returned value can

58

be compared with the value obtained using MdpObjectGetSize () to calculate the
percentage of receive completion.

RETURN VALUES

The number of current received bytes for the MdpObject is returned.

Function MdpObjectGetTransportld()

SYNOPSIS
#include <mdpApi.h>

MdpObjectTransportId MdpObjectGetTransportId (
MdpObjectHandle objectHandle) ;

DESCRIPTION

This function returns the MdpObjectTransportld for the MdpObject indicated by the
objectHandle parameter. The intended use of this information is for use with the
MdpSessionRequeueTxObject () function (this function is not yet implemented or
documented) to allow redundant transmission of an MdpObject as part of a robust one-way,
EMCON transmission scheme. This function may also be useful for application debugging
when used in conjunction with the debug logging of the MDP protocol engine. More
information will be provided as EMCON modes of operation for MDP are better defined in
the future.

RETURN VALUES
The 32-bit MdpObjectTransportId for the MdpObject is returned.

Function MdpObjectGetSour ceNodel d()

SYNOPSIS

#include <mdpApi.h>

MdpNodeId MdpObjectGetSourceNodeld (MdpObjectHandle objectHand
le);

DESCRIPTION

This function returns the MdpNodeld of the source of the MdpObject indicated by the
objectHandle parameter. The returned MdpNodeld is guaranteed to be valid only for the

time during which MdpObjectHandles of MdpObjects being received from that source are
valid (I.e. until MDP_NOTIFY_OBJECT_DELETE notifications are received for all
MdpObjects pending reception from the MdpServer).

RETURN VALUES

59

The 32-bit MdpNodeId for the source of the MdpObject is returned. If the
objectHandle value corresponds to an MdpObject being transmitted by the local
MdpServer, a value of MDP_NULL_NODE is returned.

Function M dpObjectSetNackingM ode()

SYNOPSIS

#include <mdpApi.h>

MdpError MdpObjectSetNackingMode (MdpObjectHandle objectHand
le,

MdpNackingMode mode) ;

DESCRIPTION

This function controls the nacking behavior for a partially-received MdpObject indicated by
the objectHandle parameter. Possible values for the MdpNackingMode include
MDP_NACKING_NORMAL, MDP_NACKING_INFOONLY, and MDP_NACKING_NONE.

Setting the nacking behavior of individual receive MdpObjects allows the client application to
customize its operation in an MDP multicast session. If receivers know they are not
interested in reliably receiving some portion of the content of a transmitted object, they can
reduce the overall level of traffic generated by the group by tuning their repair request
behavior with this function call. If the client application is not at all interested (even
unreliably) in receiving the indicated object, it should use the
MdpSessionAbortRxObject () function.

The default MdpNackingMode for newly-received objects is determined from the client’s
MdpNackingMode value. See the MdpSessionSetClientNackingMode () description
for more discussion on usage of these function calls.

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success. MDP_ERROR OBJECT INVALID
is returned when the objectHandle parameter is MDP_ NULL_OBJECT, but the application

should take great care not to pass invalid MdpObjectHandle’s to this (or other MdpObject)
function calls.

Function MdpObjectSetData()

SYNOPSIS

#include <mdpApi.h>

MdpError MdpObjectSetData (MdpObjectHandle objectHandle,
char=* dataPtr,

unsigned long dataSize) ;

60

DESCRIPTION

This function assigns a memory buffer for reception of an MdpObject of type MDP_DATA.
This function can only be used for receive objects of type MDP_DATA. The appropriate use
of this function is to assign a buffer to use for data reception when the
MDP_NOTIFY RX OBJECT START notification occurs. If a buffer is not assigned at this
time, the MDP protocol will assume that the application does not wish to receive the object in
question and will stop attempting to receive the data (state for the object will be deleted and
no request for repairs will be made). The dataPtr parameter points to the block of
memory in which to store the received MdpObject data content and the dataSize parameter
is used to indicate the size of the memory block. If the value of the dataSize parameter is
not of sufficient size to store the MdpObject, an error will be returned. Therefore, the
application should first use the MdpObjectGetSize () function to determine the size of
the object’s data content. The application must not free this memory during object transport.
Since the application is responsible for allocating and assigning the buffer space used for data
reception, it is up to the application to manage this memory space after reception of the
object has completed (or upon the MDP_ NOTIFY OBJECT DELETE notification which
occurs for both receive object completion or failure).

RETURN VALUES

A value of MDP_ ERROR_NONE is returned upon success MDP_ ERROR_OBJECT INVALID
is returned if the indicated object is not of type MDP_ DATA OBJECT and MDP_ERROR is
returned if the dataSize is insufficient.

Function MdpObjectGetData()

SYNOPSIS

#include <mdpApi.hs>

char* MdpObjectGetData (MdpObjectHandle objectHandle,
unsigned long* dataSize,
MdpError* error) ;

DESCRIPTION

This function returns a pointer to the location of data content storage for an MdpObject of
type MDP_DATA identified by the objectHandle parameter. The length (in bytes) of the
object is copied to the location indicated by the dataSize parameter. This function is
useful for applications wishing to take over management of the memory space after an
MDP_NOTIFY OBJECT_ DELETE notification occurs or to make use of a received data
object after the MDP_ NOTIFY RX OBJECT COMPLETE notification occurs. Note that the
management of the memory space for objects of MDP_ DATA OBJECT is up to the
application much the way the use of files sent or received is up to the application after
reliable transport is complete.

61

RETURN VALUES

A pointer to the object data content storage is returned upon success. Otherwise, a value of
NULL is returned and the error parameter is filled in with an appropriate MdpError code.

This function is only applicable to MdpObjects of type MDP_ DATA OBJECT.

Function MdpObjectGetFileName()

SYNOPSIS
#include <mdpApi.hs>
MdpError MdpObjectGetFileName (MdpObjectHandle objectHandle,
char=* name,
int maxlen) ;
DESCRIPTION

This function copies the full file name for an object of type MDP_ FILE OBJECT. For
received objects, this full name includes the path of the archive directory (see
MdpSessionSetArchiveDirectory ()) as well as the name received in the
MDP_INFO content, if available. If no MDP_INFO was available for the object, the
temporary name assigned by the MDP protocol engine is returned. This function may also be
used for transmit objects if the application wishes. Again, the full name of the file is
returned.

RETURN VALUES

A value of MDP_ ERROR NONE is returned upon success. This function is only applicable to
MdpObjects of type MDP_FILE_OBJECT. A value of MDP_ERROR OBJECT INVALID is
returned if this function is used on objects of other types.

7.0 Miscdlaneous Functions

This section describes a number of functions which serve peripheral uses in the MDP AP
and do not clearly fit into the previous categories.

Function M dpSessionSetRecvDropRate()

SYNOPSIS
#include <mdpApi.hs>
MdpError MdpSessionSetRecvDropRate (MdpSessionHandle sessionHan
dle,
double percent) ;
DESCRIPTION

62

The MdpSessionSetRecvDropRate () function allows the application to specify the
percent of artificially generated received packet loss (0-100%) in the MdpSession identified
by sessionHandle. This is useful for testing purposes to simulate uncorrelated packet

loss among receiving nodes. The default is zero artificial packet loss if this function is never
called.

RETURN VALUES

The MdpSessionSetRecvDropRate () function will return a value of
MDP_ERROR_NONE if successful. The value MDP_ ERROR_SESSION INVALID is returned
upon failure.

Function M dpSessionSetSendDropRate()

SYNOPSIS
#include <mdpApi.h>
MdpError MdpSessionSetSendDropRate (MdpSessionHandle sessionHan
dle,
double percent) ;
DESCRIPTION

The MdpSessionSetSendDropRate () function is used to specify the percent of
artificially generated transmit packet drops (0-100%) to simulate correlated packet loss among
receiving nodes for the MdpSession identified by the sessionHandle parameter. This is
useful for protocol testing purposes. The default is zero artificial packet loss if this function
is never called.

RETURN VALUE

The MdpSessionSetSendDropRate () function will return a value of
MDP ERROR_ NONE if successful. The value MD P ERROR SESSION INVALID is returned
upon failure.

63

